The Utility of Upper-Boundary Nesting in NWP

The importance of stratospheric influences for medium-range numerical weather prediction (NWP) of the troposphere has led to increases in the heights of global model domains at operational centers around the world. Grids now routinely extend to 0.1 hPa (approximately 65 km) in these systems, thereby...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Monthly weather review 2011-07, Vol.139 (7), p.2117-2144
Hauptverfasser: MCTAGGART-COWAN, Ron, GIRARD, Claude, PLANTE, André, DESGAGNE, Michel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2144
container_issue 7
container_start_page 2117
container_title Monthly weather review
container_volume 139
creator MCTAGGART-COWAN, Ron
GIRARD, Claude
PLANTE, André
DESGAGNE, Michel
description The importance of stratospheric influences for medium-range numerical weather prediction (NWP) of the troposphere has led to increases in the heights of global model domains at operational centers around the world. Grids now routinely extend to 0.1 hPa (approximately 65 km) in these systems, thereby covering the full depth of the stratosphere and the lower portion of the mesosphere. Increasing the vertical extent of higher-resolution limited-area models (LAMs) nested within the global forecasts is problematic because of the computational cost of additional levels and the possibility of inaccuracy or instability in the high-speed stratospheric jets. An upper-boundary nesting (UBN) technique is developed that allows information from high-topped driving grids to influence the evolution of a lower-topped (~10 hPa) LAM integration in a manner analogous to the treatment of lateral boundary conditions. A stratospheric vortex displacement event in the winter of 2007 is used to study the effectiveness of the UBN technique. Tropospheric blocking over Europe leads to the development of an amplifying planetary-scale wave in the lower stratosphere that culminates in an anticyclonic wave break over Asia and a marked increase of wave-1 asymmetry. The rapid evolution of stratospheric potential vorticity (PV) is poorly represented in low-topped models, resulting in PV-induced forecast height errors throughout the depth of the troposphere on time scales as short as 2–5 days. Application of the UBN technique is shown to be an effective way for low-topped configurations to benefit from stratospheric predictability without the problems associated with the inclusion of the stratospheric flow in the higher-resolution model domain. The robustness and relative ease of implementation of the UBN technique may make this computationally inexpensive strategy attractive for a wide range of NWP applications.
doi_str_mv 10.1175/2010mwr3633.1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_878685013</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2827264316</sourcerecordid><originalsourceid>FETCH-LOGICAL-c427t-7332c4ed8b4fea6ac02c4c3c7e45eefb59af84dbe2aaf5d79836f6916fc124eb3</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWKtH74vizdTJxybZoxa_oFaRlh5DNpvolnZ3TbZI_70pFW-ehoFnnpl5ETonMCJE5jcUCKy_AxOMjcgBGpCcAgZesEM0AKASg-D8GJ3EuAQAITgdoOvZp8vmfb2q-23W-mzedS7gu3bTVCZss6mLfd18ZHWTTRdvp-jIm1V0Z791iOYP97PxE568Pj6PbyfYcip7LBmjlrtKldw7I4yF1FpmpeO5c77MC-MVr0pHjfF5JQvFhBcFEd4Syl3Jhuhi7-1C-7VJJ-hluwlNWqmVVELlQFiCLv-DqKKSCs6ISBTeUza0MQbndRfqdXpNE9C71PQutZfF-y41TRJ_9Ws10ZqVD6axdfwbokmqGAH2A6pBamk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2827264316</pqid></control><display><type>article</type><title>The Utility of Upper-Boundary Nesting in NWP</title><source>American Meteorological Society</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>MCTAGGART-COWAN, Ron ; GIRARD, Claude ; PLANTE, André ; DESGAGNE, Michel</creator><creatorcontrib>MCTAGGART-COWAN, Ron ; GIRARD, Claude ; PLANTE, André ; DESGAGNE, Michel</creatorcontrib><description>The importance of stratospheric influences for medium-range numerical weather prediction (NWP) of the troposphere has led to increases in the heights of global model domains at operational centers around the world. Grids now routinely extend to 0.1 hPa (approximately 65 km) in these systems, thereby covering the full depth of the stratosphere and the lower portion of the mesosphere. Increasing the vertical extent of higher-resolution limited-area models (LAMs) nested within the global forecasts is problematic because of the computational cost of additional levels and the possibility of inaccuracy or instability in the high-speed stratospheric jets. An upper-boundary nesting (UBN) technique is developed that allows information from high-topped driving grids to influence the evolution of a lower-topped (~10 hPa) LAM integration in a manner analogous to the treatment of lateral boundary conditions. A stratospheric vortex displacement event in the winter of 2007 is used to study the effectiveness of the UBN technique. Tropospheric blocking over Europe leads to the development of an amplifying planetary-scale wave in the lower stratosphere that culminates in an anticyclonic wave break over Asia and a marked increase of wave-1 asymmetry. The rapid evolution of stratospheric potential vorticity (PV) is poorly represented in low-topped models, resulting in PV-induced forecast height errors throughout the depth of the troposphere on time scales as short as 2–5 days. Application of the UBN technique is shown to be an effective way for low-topped configurations to benefit from stratospheric predictability without the problems associated with the inclusion of the stratospheric flow in the higher-resolution model domain. The robustness and relative ease of implementation of the UBN technique may make this computationally inexpensive strategy attractive for a wide range of NWP applications.</description><identifier>ISSN: 0027-0644</identifier><identifier>EISSN: 1520-0493</identifier><identifier>DOI: 10.1175/2010mwr3633.1</identifier><identifier>CODEN: MWREAB</identifier><language>eng</language><publisher>Boston, MA: American Meteorological Society</publisher><subject>Boundary conditions ; Domains ; Driving ability ; Earth, ocean, space ; Evolution ; Exact sciences and technology ; External geophysics ; Investigations ; Lower mantle ; Lower stratosphere ; Mathematical models ; Mesosphere ; Meteorology ; Modelling ; Nesting ; Numerical prediction ; Numerical weather forecasting ; Ozone ; Potential vorticity ; Robustness (mathematics) ; Stratosphere ; Stratospheric vortices ; Troposphere ; Vortices ; Vorticity ; Weather forecasting</subject><ispartof>Monthly weather review, 2011-07, Vol.139 (7), p.2117-2144</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright American Meteorological Society 2011</rights><rights>Copyright American Meteorological Society Jul 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c427t-7332c4ed8b4fea6ac02c4c3c7e45eefb59af84dbe2aaf5d79836f6916fc124eb3</citedby><cites>FETCH-LOGICAL-c427t-7332c4ed8b4fea6ac02c4c3c7e45eefb59af84dbe2aaf5d79836f6916fc124eb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,3681,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24318310$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>MCTAGGART-COWAN, Ron</creatorcontrib><creatorcontrib>GIRARD, Claude</creatorcontrib><creatorcontrib>PLANTE, André</creatorcontrib><creatorcontrib>DESGAGNE, Michel</creatorcontrib><title>The Utility of Upper-Boundary Nesting in NWP</title><title>Monthly weather review</title><description>The importance of stratospheric influences for medium-range numerical weather prediction (NWP) of the troposphere has led to increases in the heights of global model domains at operational centers around the world. Grids now routinely extend to 0.1 hPa (approximately 65 km) in these systems, thereby covering the full depth of the stratosphere and the lower portion of the mesosphere. Increasing the vertical extent of higher-resolution limited-area models (LAMs) nested within the global forecasts is problematic because of the computational cost of additional levels and the possibility of inaccuracy or instability in the high-speed stratospheric jets. An upper-boundary nesting (UBN) technique is developed that allows information from high-topped driving grids to influence the evolution of a lower-topped (~10 hPa) LAM integration in a manner analogous to the treatment of lateral boundary conditions. A stratospheric vortex displacement event in the winter of 2007 is used to study the effectiveness of the UBN technique. Tropospheric blocking over Europe leads to the development of an amplifying planetary-scale wave in the lower stratosphere that culminates in an anticyclonic wave break over Asia and a marked increase of wave-1 asymmetry. The rapid evolution of stratospheric potential vorticity (PV) is poorly represented in low-topped models, resulting in PV-induced forecast height errors throughout the depth of the troposphere on time scales as short as 2–5 days. Application of the UBN technique is shown to be an effective way for low-topped configurations to benefit from stratospheric predictability without the problems associated with the inclusion of the stratospheric flow in the higher-resolution model domain. The robustness and relative ease of implementation of the UBN technique may make this computationally inexpensive strategy attractive for a wide range of NWP applications.</description><subject>Boundary conditions</subject><subject>Domains</subject><subject>Driving ability</subject><subject>Earth, ocean, space</subject><subject>Evolution</subject><subject>Exact sciences and technology</subject><subject>External geophysics</subject><subject>Investigations</subject><subject>Lower mantle</subject><subject>Lower stratosphere</subject><subject>Mathematical models</subject><subject>Mesosphere</subject><subject>Meteorology</subject><subject>Modelling</subject><subject>Nesting</subject><subject>Numerical prediction</subject><subject>Numerical weather forecasting</subject><subject>Ozone</subject><subject>Potential vorticity</subject><subject>Robustness (mathematics)</subject><subject>Stratosphere</subject><subject>Stratospheric vortices</subject><subject>Troposphere</subject><subject>Vortices</subject><subject>Vorticity</subject><subject>Weather forecasting</subject><issn>0027-0644</issn><issn>1520-0493</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kE1LAzEQhoMoWKtH74vizdTJxybZoxa_oFaRlh5DNpvolnZ3TbZI_70pFW-ehoFnnpl5ETonMCJE5jcUCKy_AxOMjcgBGpCcAgZesEM0AKASg-D8GJ3EuAQAITgdoOvZp8vmfb2q-23W-mzedS7gu3bTVCZss6mLfd18ZHWTTRdvp-jIm1V0Z791iOYP97PxE568Pj6PbyfYcip7LBmjlrtKldw7I4yF1FpmpeO5c77MC-MVr0pHjfF5JQvFhBcFEd4Syl3Jhuhi7-1C-7VJJ-hluwlNWqmVVELlQFiCLv-DqKKSCs6ISBTeUza0MQbndRfqdXpNE9C71PQutZfF-y41TRJ_9Ws10ZqVD6axdfwbokmqGAH2A6pBamk</recordid><startdate>20110701</startdate><enddate>20110701</enddate><creator>MCTAGGART-COWAN, Ron</creator><creator>GIRARD, Claude</creator><creator>PLANTE, André</creator><creator>DESGAGNE, Michel</creator><general>American Meteorological Society</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8AF</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L7M</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20110701</creationdate><title>The Utility of Upper-Boundary Nesting in NWP</title><author>MCTAGGART-COWAN, Ron ; GIRARD, Claude ; PLANTE, André ; DESGAGNE, Michel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c427t-7332c4ed8b4fea6ac02c4c3c7e45eefb59af84dbe2aaf5d79836f6916fc124eb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Boundary conditions</topic><topic>Domains</topic><topic>Driving ability</topic><topic>Earth, ocean, space</topic><topic>Evolution</topic><topic>Exact sciences and technology</topic><topic>External geophysics</topic><topic>Investigations</topic><topic>Lower mantle</topic><topic>Lower stratosphere</topic><topic>Mathematical models</topic><topic>Mesosphere</topic><topic>Meteorology</topic><topic>Modelling</topic><topic>Nesting</topic><topic>Numerical prediction</topic><topic>Numerical weather forecasting</topic><topic>Ozone</topic><topic>Potential vorticity</topic><topic>Robustness (mathematics)</topic><topic>Stratosphere</topic><topic>Stratospheric vortices</topic><topic>Troposphere</topic><topic>Vortices</topic><topic>Vorticity</topic><topic>Weather forecasting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>MCTAGGART-COWAN, Ron</creatorcontrib><creatorcontrib>GIRARD, Claude</creatorcontrib><creatorcontrib>PLANTE, André</creatorcontrib><creatorcontrib>DESGAGNE, Michel</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Monthly weather review</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>MCTAGGART-COWAN, Ron</au><au>GIRARD, Claude</au><au>PLANTE, André</au><au>DESGAGNE, Michel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Utility of Upper-Boundary Nesting in NWP</atitle><jtitle>Monthly weather review</jtitle><date>2011-07-01</date><risdate>2011</risdate><volume>139</volume><issue>7</issue><spage>2117</spage><epage>2144</epage><pages>2117-2144</pages><issn>0027-0644</issn><eissn>1520-0493</eissn><coden>MWREAB</coden><abstract>The importance of stratospheric influences for medium-range numerical weather prediction (NWP) of the troposphere has led to increases in the heights of global model domains at operational centers around the world. Grids now routinely extend to 0.1 hPa (approximately 65 km) in these systems, thereby covering the full depth of the stratosphere and the lower portion of the mesosphere. Increasing the vertical extent of higher-resolution limited-area models (LAMs) nested within the global forecasts is problematic because of the computational cost of additional levels and the possibility of inaccuracy or instability in the high-speed stratospheric jets. An upper-boundary nesting (UBN) technique is developed that allows information from high-topped driving grids to influence the evolution of a lower-topped (~10 hPa) LAM integration in a manner analogous to the treatment of lateral boundary conditions. A stratospheric vortex displacement event in the winter of 2007 is used to study the effectiveness of the UBN technique. Tropospheric blocking over Europe leads to the development of an amplifying planetary-scale wave in the lower stratosphere that culminates in an anticyclonic wave break over Asia and a marked increase of wave-1 asymmetry. The rapid evolution of stratospheric potential vorticity (PV) is poorly represented in low-topped models, resulting in PV-induced forecast height errors throughout the depth of the troposphere on time scales as short as 2–5 days. Application of the UBN technique is shown to be an effective way for low-topped configurations to benefit from stratospheric predictability without the problems associated with the inclusion of the stratospheric flow in the higher-resolution model domain. The robustness and relative ease of implementation of the UBN technique may make this computationally inexpensive strategy attractive for a wide range of NWP applications.</abstract><cop>Boston, MA</cop><pub>American Meteorological Society</pub><doi>10.1175/2010mwr3633.1</doi><tpages>28</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-0644
ispartof Monthly weather review, 2011-07, Vol.139 (7), p.2117-2144
issn 0027-0644
1520-0493
language eng
recordid cdi_proquest_journals_878685013
source American Meteorological Society; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects Boundary conditions
Domains
Driving ability
Earth, ocean, space
Evolution
Exact sciences and technology
External geophysics
Investigations
Lower mantle
Lower stratosphere
Mathematical models
Mesosphere
Meteorology
Modelling
Nesting
Numerical prediction
Numerical weather forecasting
Ozone
Potential vorticity
Robustness (mathematics)
Stratosphere
Stratospheric vortices
Troposphere
Vortices
Vorticity
Weather forecasting
title The Utility of Upper-Boundary Nesting in NWP
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T01%3A22%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Utility%20of%20Upper-Boundary%20Nesting%20in%20NWP&rft.jtitle=Monthly%20weather%20review&rft.au=MCTAGGART-COWAN,%20Ron&rft.date=2011-07-01&rft.volume=139&rft.issue=7&rft.spage=2117&rft.epage=2144&rft.pages=2117-2144&rft.issn=0027-0644&rft.eissn=1520-0493&rft.coden=MWREAB&rft_id=info:doi/10.1175/2010mwr3633.1&rft_dat=%3Cproquest_cross%3E2827264316%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2827264316&rft_id=info:pmid/&rfr_iscdi=true