Comparison of Quantum Dots-in-a-Double-Well and Quantum Dots-in-a-Well Focal Plane Arrays in the Long-Wave Infrared

Our previous research has reported on the development of the first generation of quantum dots-in-a-well (DWELL) focal plane arrays (FPAs), which are based on InAs quantum dots (QDs) embedded in an InGaAs well having GaAs barriers, which have demonstrated spectral tunability via an externally applied...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on electron devices 2011-07, Vol.58 (7), p.2022-2027
Hauptverfasser: Andrews, J R, Restaino, S R, Teare, S W, Sharma, Y D, Jang, W, Vandervelde, T E, Brown, J S, Reisinger, A, Sundaram, M, Krishna, S, Lester, L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2027
container_issue 7
container_start_page 2022
container_title IEEE transactions on electron devices
container_volume 58
creator Andrews, J R
Restaino, S R
Teare, S W
Sharma, Y D
Jang, W
Vandervelde, T E
Brown, J S
Reisinger, A
Sundaram, M
Krishna, S
Lester, L
description Our previous research has reported on the development of the first generation of quantum dots-in-a-well (DWELL) focal plane arrays (FPAs), which are based on InAs quantum dots (QDs) embedded in an InGaAs well having GaAs barriers, which have demonstrated spectral tunability via an externally applied bias voltage. More recently, technologies in DWELL devices have been further advanced by embedding InAs QDs in InGaAs and GaAs double wells with AlGaAs barriers, leading to a less strained InAs/InGaAs/GaAs/AlGaAs heterostructure. These lower strain quantum dots-in-a-double-well devices exhibit lower dark current than the previous generation DWELL devices while still demonstrating spectral tunability. This paper compares two different configurations of double DWELL (DDWELL) FPAs to a previous generation DWELL detector and to a commercially available quantum well infrared photodetector (QWIP). All four devices are 320 × 256 pixel FPAs that have been fabricated and hybridized with an Indigo 9705 read-out integrated circuit. Radiometric characterization, average array responsivity, array uniformity and measured noise equivalent temperature difference for all four devices is computed and compared at 60 K. Overall, the DDWELL devices had lower noise equivalent temperature difference and higher uniformity than the first-generation DWELL devices, although the commercially available QWIP has demonstrated the best performance.
doi_str_mv 10.1109/TED.2011.2140374
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_873111226</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5759763</ieee_id><sourcerecordid>2380266191</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-7ac42c55cd322375717065adf3882abe5c1fb432a89bf569b35ea6fa6bbdbd203</originalsourceid><addsrcrecordid>eNp9kc1rFEEQxRtRcI3eBS-NIHrptb8_jmE30cCCCpEcm5qeHp0w2712zwTy39txlxxEPBVF_epRrx5CrxldM0bdx-uL7ZpTxtacSSqMfIJWTClDnJb6KVpRyixxworn6EWtt63VUvIVqpu8P0AZa044D_jbAmle9nib50rGRIBs89JNkdzEacKQ-n8Qf0aXOcCEv06QIj4vBe4rHhOef0a8y-kHuYG7iK_SUKDE_iV6NsBU46tTPUPfLy-uN5_J7sunq835jgRh1UwMBMmDUqEXnAujDDNUK-gHYS2HLqrAhk4KDtZ1g9KuEyqCHkB3Xd_1nIoz9P6oeyj51xLr7PdjDe3admReqrdOM6cNZ4388F-SGSWkY8bKhr79C73NS0nNh7dGMMY41w2iRyiUXGuJgz-UcQ_l3jPqH-LyLS7_EJc_xdVW3p10obZXtk-lMNbHPd6MGq14494cuTHG-DhWRjmjhfgNpjKcKw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>873111226</pqid></control><display><type>article</type><title>Comparison of Quantum Dots-in-a-Double-Well and Quantum Dots-in-a-Well Focal Plane Arrays in the Long-Wave Infrared</title><source>IEEE Electronic Library (IEL)</source><creator>Andrews, J R ; Restaino, S R ; Teare, S W ; Sharma, Y D ; Jang, W ; Vandervelde, T E ; Brown, J S ; Reisinger, A ; Sundaram, M ; Krishna, S ; Lester, L</creator><creatorcontrib>Andrews, J R ; Restaino, S R ; Teare, S W ; Sharma, Y D ; Jang, W ; Vandervelde, T E ; Brown, J S ; Reisinger, A ; Sundaram, M ; Krishna, S ; Lester, L</creatorcontrib><description>Our previous research has reported on the development of the first generation of quantum dots-in-a-well (DWELL) focal plane arrays (FPAs), which are based on InAs quantum dots (QDs) embedded in an InGaAs well having GaAs barriers, which have demonstrated spectral tunability via an externally applied bias voltage. More recently, technologies in DWELL devices have been further advanced by embedding InAs QDs in InGaAs and GaAs double wells with AlGaAs barriers, leading to a less strained InAs/InGaAs/GaAs/AlGaAs heterostructure. These lower strain quantum dots-in-a-double-well devices exhibit lower dark current than the previous generation DWELL devices while still demonstrating spectral tunability. This paper compares two different configurations of double DWELL (DDWELL) FPAs to a previous generation DWELL detector and to a commercially available quantum well infrared photodetector (QWIP). All four devices are 320 × 256 pixel FPAs that have been fabricated and hybridized with an Indigo 9705 read-out integrated circuit. Radiometric characterization, average array responsivity, array uniformity and measured noise equivalent temperature difference for all four devices is computed and compared at 60 K. Overall, the DDWELL devices had lower noise equivalent temperature difference and higher uniformity than the first-generation DWELL devices, although the commercially available QWIP has demonstrated the best performance.</description><identifier>ISSN: 0018-9383</identifier><identifier>EISSN: 1557-9646</identifier><identifier>DOI: 10.1109/TED.2011.2140374</identifier><identifier>CODEN: IETDAI</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Aluminum gallium arsenides ; Applied sciences ; Arrays ; Compound structure devices ; Design. Technologies. Operation analysis. Testing ; Devices ; Dwell ; Electronics ; Exact sciences and technology ; Focal plane ; Gallium arsenide ; Gallium arsenides ; Imaging devices ; Indium gallium arsenide ; Infrared image sensors ; Integrated circuits ; Lighting ; Noise ; Noise equivalent temperature difference ; Optoelectronic devices ; Pixel ; Quantum dots ; quantum dots (QDs) ; quantum wells (QWs) ; radiometry ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Studies ; Temperature measurement</subject><ispartof>IEEE transactions on electron devices, 2011-07, Vol.58 (7), p.2022-2027</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jul 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-7ac42c55cd322375717065adf3882abe5c1fb432a89bf569b35ea6fa6bbdbd203</citedby><cites>FETCH-LOGICAL-c385t-7ac42c55cd322375717065adf3882abe5c1fb432a89bf569b35ea6fa6bbdbd203</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5759763$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5759763$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24327652$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Andrews, J R</creatorcontrib><creatorcontrib>Restaino, S R</creatorcontrib><creatorcontrib>Teare, S W</creatorcontrib><creatorcontrib>Sharma, Y D</creatorcontrib><creatorcontrib>Jang, W</creatorcontrib><creatorcontrib>Vandervelde, T E</creatorcontrib><creatorcontrib>Brown, J S</creatorcontrib><creatorcontrib>Reisinger, A</creatorcontrib><creatorcontrib>Sundaram, M</creatorcontrib><creatorcontrib>Krishna, S</creatorcontrib><creatorcontrib>Lester, L</creatorcontrib><title>Comparison of Quantum Dots-in-a-Double-Well and Quantum Dots-in-a-Well Focal Plane Arrays in the Long-Wave Infrared</title><title>IEEE transactions on electron devices</title><addtitle>TED</addtitle><description>Our previous research has reported on the development of the first generation of quantum dots-in-a-well (DWELL) focal plane arrays (FPAs), which are based on InAs quantum dots (QDs) embedded in an InGaAs well having GaAs barriers, which have demonstrated spectral tunability via an externally applied bias voltage. More recently, technologies in DWELL devices have been further advanced by embedding InAs QDs in InGaAs and GaAs double wells with AlGaAs barriers, leading to a less strained InAs/InGaAs/GaAs/AlGaAs heterostructure. These lower strain quantum dots-in-a-double-well devices exhibit lower dark current than the previous generation DWELL devices while still demonstrating spectral tunability. This paper compares two different configurations of double DWELL (DDWELL) FPAs to a previous generation DWELL detector and to a commercially available quantum well infrared photodetector (QWIP). All four devices are 320 × 256 pixel FPAs that have been fabricated and hybridized with an Indigo 9705 read-out integrated circuit. Radiometric characterization, average array responsivity, array uniformity and measured noise equivalent temperature difference for all four devices is computed and compared at 60 K. Overall, the DDWELL devices had lower noise equivalent temperature difference and higher uniformity than the first-generation DWELL devices, although the commercially available QWIP has demonstrated the best performance.</description><subject>Aluminum gallium arsenides</subject><subject>Applied sciences</subject><subject>Arrays</subject><subject>Compound structure devices</subject><subject>Design. Technologies. Operation analysis. Testing</subject><subject>Devices</subject><subject>Dwell</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Focal plane</subject><subject>Gallium arsenide</subject><subject>Gallium arsenides</subject><subject>Imaging devices</subject><subject>Indium gallium arsenide</subject><subject>Infrared image sensors</subject><subject>Integrated circuits</subject><subject>Lighting</subject><subject>Noise</subject><subject>Noise equivalent temperature difference</subject><subject>Optoelectronic devices</subject><subject>Pixel</subject><subject>Quantum dots</subject><subject>quantum dots (QDs)</subject><subject>quantum wells (QWs)</subject><subject>radiometry</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Studies</subject><subject>Temperature measurement</subject><issn>0018-9383</issn><issn>1557-9646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kc1rFEEQxRtRcI3eBS-NIHrptb8_jmE30cCCCpEcm5qeHp0w2712zwTy39txlxxEPBVF_epRrx5CrxldM0bdx-uL7ZpTxtacSSqMfIJWTClDnJb6KVpRyixxworn6EWtt63VUvIVqpu8P0AZa044D_jbAmle9nib50rGRIBs89JNkdzEacKQ-n8Qf0aXOcCEv06QIj4vBe4rHhOef0a8y-kHuYG7iK_SUKDE_iV6NsBU46tTPUPfLy-uN5_J7sunq835jgRh1UwMBMmDUqEXnAujDDNUK-gHYS2HLqrAhk4KDtZ1g9KuEyqCHkB3Xd_1nIoz9P6oeyj51xLr7PdjDe3admReqrdOM6cNZ4388F-SGSWkY8bKhr79C73NS0nNh7dGMMY41w2iRyiUXGuJgz-UcQ_l3jPqH-LyLS7_EJc_xdVW3p10obZXtk-lMNbHPd6MGq14494cuTHG-DhWRjmjhfgNpjKcKw</recordid><startdate>20110701</startdate><enddate>20110701</enddate><creator>Andrews, J R</creator><creator>Restaino, S R</creator><creator>Teare, S W</creator><creator>Sharma, Y D</creator><creator>Jang, W</creator><creator>Vandervelde, T E</creator><creator>Brown, J S</creator><creator>Reisinger, A</creator><creator>Sundaram, M</creator><creator>Krishna, S</creator><creator>Lester, L</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>7QF</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope></search><sort><creationdate>20110701</creationdate><title>Comparison of Quantum Dots-in-a-Double-Well and Quantum Dots-in-a-Well Focal Plane Arrays in the Long-Wave Infrared</title><author>Andrews, J R ; Restaino, S R ; Teare, S W ; Sharma, Y D ; Jang, W ; Vandervelde, T E ; Brown, J S ; Reisinger, A ; Sundaram, M ; Krishna, S ; Lester, L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-7ac42c55cd322375717065adf3882abe5c1fb432a89bf569b35ea6fa6bbdbd203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Aluminum gallium arsenides</topic><topic>Applied sciences</topic><topic>Arrays</topic><topic>Compound structure devices</topic><topic>Design. Technologies. Operation analysis. Testing</topic><topic>Devices</topic><topic>Dwell</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Focal plane</topic><topic>Gallium arsenide</topic><topic>Gallium arsenides</topic><topic>Imaging devices</topic><topic>Indium gallium arsenide</topic><topic>Infrared image sensors</topic><topic>Integrated circuits</topic><topic>Lighting</topic><topic>Noise</topic><topic>Noise equivalent temperature difference</topic><topic>Optoelectronic devices</topic><topic>Pixel</topic><topic>Quantum dots</topic><topic>quantum dots (QDs)</topic><topic>quantum wells (QWs)</topic><topic>radiometry</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Studies</topic><topic>Temperature measurement</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Andrews, J R</creatorcontrib><creatorcontrib>Restaino, S R</creatorcontrib><creatorcontrib>Teare, S W</creatorcontrib><creatorcontrib>Sharma, Y D</creatorcontrib><creatorcontrib>Jang, W</creatorcontrib><creatorcontrib>Vandervelde, T E</creatorcontrib><creatorcontrib>Brown, J S</creatorcontrib><creatorcontrib>Reisinger, A</creatorcontrib><creatorcontrib>Sundaram, M</creatorcontrib><creatorcontrib>Krishna, S</creatorcontrib><creatorcontrib>Lester, L</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Aluminium Industry Abstracts</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><jtitle>IEEE transactions on electron devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Andrews, J R</au><au>Restaino, S R</au><au>Teare, S W</au><au>Sharma, Y D</au><au>Jang, W</au><au>Vandervelde, T E</au><au>Brown, J S</au><au>Reisinger, A</au><au>Sundaram, M</au><au>Krishna, S</au><au>Lester, L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparison of Quantum Dots-in-a-Double-Well and Quantum Dots-in-a-Well Focal Plane Arrays in the Long-Wave Infrared</atitle><jtitle>IEEE transactions on electron devices</jtitle><stitle>TED</stitle><date>2011-07-01</date><risdate>2011</risdate><volume>58</volume><issue>7</issue><spage>2022</spage><epage>2027</epage><pages>2022-2027</pages><issn>0018-9383</issn><eissn>1557-9646</eissn><coden>IETDAI</coden><abstract>Our previous research has reported on the development of the first generation of quantum dots-in-a-well (DWELL) focal plane arrays (FPAs), which are based on InAs quantum dots (QDs) embedded in an InGaAs well having GaAs barriers, which have demonstrated spectral tunability via an externally applied bias voltage. More recently, technologies in DWELL devices have been further advanced by embedding InAs QDs in InGaAs and GaAs double wells with AlGaAs barriers, leading to a less strained InAs/InGaAs/GaAs/AlGaAs heterostructure. These lower strain quantum dots-in-a-double-well devices exhibit lower dark current than the previous generation DWELL devices while still demonstrating spectral tunability. This paper compares two different configurations of double DWELL (DDWELL) FPAs to a previous generation DWELL detector and to a commercially available quantum well infrared photodetector (QWIP). All four devices are 320 × 256 pixel FPAs that have been fabricated and hybridized with an Indigo 9705 read-out integrated circuit. Radiometric characterization, average array responsivity, array uniformity and measured noise equivalent temperature difference for all four devices is computed and compared at 60 K. Overall, the DDWELL devices had lower noise equivalent temperature difference and higher uniformity than the first-generation DWELL devices, although the commercially available QWIP has demonstrated the best performance.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TED.2011.2140374</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9383
ispartof IEEE transactions on electron devices, 2011-07, Vol.58 (7), p.2022-2027
issn 0018-9383
1557-9646
language eng
recordid cdi_proquest_journals_873111226
source IEEE Electronic Library (IEL)
subjects Aluminum gallium arsenides
Applied sciences
Arrays
Compound structure devices
Design. Technologies. Operation analysis. Testing
Devices
Dwell
Electronics
Exact sciences and technology
Focal plane
Gallium arsenide
Gallium arsenides
Imaging devices
Indium gallium arsenide
Infrared image sensors
Integrated circuits
Lighting
Noise
Noise equivalent temperature difference
Optoelectronic devices
Pixel
Quantum dots
quantum dots (QDs)
quantum wells (QWs)
radiometry
Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices
Studies
Temperature measurement
title Comparison of Quantum Dots-in-a-Double-Well and Quantum Dots-in-a-Well Focal Plane Arrays in the Long-Wave Infrared
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T22%3A25%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparison%20of%20Quantum%20Dots-in-a-Double-Well%20and%20Quantum%20Dots-in-a-Well%20Focal%20Plane%20Arrays%20in%20the%20Long-Wave%20Infrared&rft.jtitle=IEEE%20transactions%20on%20electron%20devices&rft.au=Andrews,%20J%20R&rft.date=2011-07-01&rft.volume=58&rft.issue=7&rft.spage=2022&rft.epage=2027&rft.pages=2022-2027&rft.issn=0018-9383&rft.eissn=1557-9646&rft.coden=IETDAI&rft_id=info:doi/10.1109/TED.2011.2140374&rft_dat=%3Cproquest_RIE%3E2380266191%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=873111226&rft_id=info:pmid/&rft_ieee_id=5759763&rfr_iscdi=true