Change of filamentation dynamics of RecA protein induced by D112R Amino acid substitution or ATP to dATP replacement; results in filament resistance to RecX protein action

It was discovered that the mutant D112R RecA protein is more resistant to the action of its negative regulator, the RecX protein, than wild type protein both in vitro and in vivo. By means of molecular modeling methods, we showed that amino-acid residue at the position 112 cannot approach the RecX c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular biology (New York) 2011-06, Vol.45 (3), p.500-507
Hauptverfasser: Dudkina, A. V., Schvetsov, A. V., Bakhlanova, I. V., Baitin, D. M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 507
container_issue 3
container_start_page 500
container_title Molecular biology (New York)
container_volume 45
creator Dudkina, A. V.
Schvetsov, A. V.
Bakhlanova, I. V.
Baitin, D. M.
description It was discovered that the mutant D112R RecA protein is more resistant to the action of its negative regulator, the RecX protein, than wild type protein both in vitro and in vivo. By means of molecular modeling methods, we showed that amino-acid residue at the position 112 cannot approach the RecX closer than 25–28 Å. Thus, direct contact between the amino acid residue and the RecX is not possible. The RecA D112R protein more actively competes with the SSB protein for the binding sites on single-stranded DNA (ssDNA) and, therefore, differs from wild type RecA by the filamentation dynamics on ssDNA. On the other hand, when replacing ATP to dATP, wild type RecA protein, changing the filamentation dynamics on ssDNA, also become more resistant to the RecX. On the basis of these data, a conclusion was drawn that filamentation dynamics is of substantially greater importance in the resistance of the RecA filament to the RecX than previously discussed protein-protein interactions RecA-RecX. We also propose an improved model of the RecA filament regulation by the RecX protein, according to which the RecA filament elongation along ssDNA is blocked by the RecX protein on the region of ssDNA located beyond the filament.
doi_str_mv 10.1134/S0026893311030046
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_871980918</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2375997141</sourcerecordid><originalsourceid>FETCH-LOGICAL-c315t-35cdb0936fac7210d13ccf8f2c489a6a087c20d9a29a6f9fd9f85e2731f7b95a3</originalsourceid><addsrcrecordid>eNp1kdtKAzEQhoMoWKsP4F3wfjWTdHcTvCr1CILiAbxb0hw00mZrkr3oM_mSJlb0QoTAMDP__3-QQegQyDEAm5w8EEIbLhgDIIyQSbOFRtAQXjE6qbfRqKyrst9FezG-EQL50RH6mL1K_2Jwb7F1C7k0Psnkeo_12sulU7Fs7o2a4lXok3EeO68HZTSer_EZAL3H06XzPZbKaRyHeUwuDV8JfcDTxzuceqxLDWa1kMoUwmlu4rBIMYf9YMvMxSS9MsWTmc8_TKlK4j7asXIRzcF3HaOni_PH2VV1c3t5PZveVIpBnSpWKz0ngjVWqpYC0cCUstxSNeFCNpLwVlGihaS5s8JqYXltaMvAtnNRSzZGR5vcjH8fTEzdWz8En5Edb0FwIoBnEWxEKvQxBmO7VXBLGdYdkK6cpPtzkuyhG0_M2vzr4Tf4f9Mnp_-PSg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>871980918</pqid></control><display><type>article</type><title>Change of filamentation dynamics of RecA protein induced by D112R Amino acid substitution or ATP to dATP replacement; results in filament resistance to RecX protein action</title><source>SpringerLink Journals - AutoHoldings</source><creator>Dudkina, A. V. ; Schvetsov, A. V. ; Bakhlanova, I. V. ; Baitin, D. M.</creator><creatorcontrib>Dudkina, A. V. ; Schvetsov, A. V. ; Bakhlanova, I. V. ; Baitin, D. M.</creatorcontrib><description>It was discovered that the mutant D112R RecA protein is more resistant to the action of its negative regulator, the RecX protein, than wild type protein both in vitro and in vivo. By means of molecular modeling methods, we showed that amino-acid residue at the position 112 cannot approach the RecX closer than 25–28 Å. Thus, direct contact between the amino acid residue and the RecX is not possible. The RecA D112R protein more actively competes with the SSB protein for the binding sites on single-stranded DNA (ssDNA) and, therefore, differs from wild type RecA by the filamentation dynamics on ssDNA. On the other hand, when replacing ATP to dATP, wild type RecA protein, changing the filamentation dynamics on ssDNA, also become more resistant to the RecX. On the basis of these data, a conclusion was drawn that filamentation dynamics is of substantially greater importance in the resistance of the RecA filament to the RecX than previously discussed protein-protein interactions RecA-RecX. We also propose an improved model of the RecA filament regulation by the RecX protein, according to which the RecA filament elongation along ssDNA is blocked by the RecX protein on the region of ssDNA located beyond the filament.</description><identifier>ISSN: 0026-8933</identifier><identifier>EISSN: 1608-3245</identifier><identifier>DOI: 10.1134/S0026893311030046</identifier><language>eng</language><publisher>Dordrecht: SP MAIK Nauka/Interperiodica</publisher><subject>Amino acids ; Biochemistry ; Biomedical and Life Sciences ; Enzymes ; Human Genetics ; Life Sciences ; Molecular biology ; Proteins ; Structrural-Functional Analysis of Biopolymers and Their Complexes</subject><ispartof>Molecular biology (New York), 2011-06, Vol.45 (3), p.500-507</ispartof><rights>Pleiades Publishing, Ltd. 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c315t-35cdb0936fac7210d13ccf8f2c489a6a087c20d9a29a6f9fd9f85e2731f7b95a3</citedby><cites>FETCH-LOGICAL-c315t-35cdb0936fac7210d13ccf8f2c489a6a087c20d9a29a6f9fd9f85e2731f7b95a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0026893311030046$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0026893311030046$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,41486,42555,51317</link.rule.ids></links><search><creatorcontrib>Dudkina, A. V.</creatorcontrib><creatorcontrib>Schvetsov, A. V.</creatorcontrib><creatorcontrib>Bakhlanova, I. V.</creatorcontrib><creatorcontrib>Baitin, D. M.</creatorcontrib><title>Change of filamentation dynamics of RecA protein induced by D112R Amino acid substitution or ATP to dATP replacement; results in filament resistance to RecX protein action</title><title>Molecular biology (New York)</title><addtitle>Mol Biol</addtitle><description>It was discovered that the mutant D112R RecA protein is more resistant to the action of its negative regulator, the RecX protein, than wild type protein both in vitro and in vivo. By means of molecular modeling methods, we showed that amino-acid residue at the position 112 cannot approach the RecX closer than 25–28 Å. Thus, direct contact between the amino acid residue and the RecX is not possible. The RecA D112R protein more actively competes with the SSB protein for the binding sites on single-stranded DNA (ssDNA) and, therefore, differs from wild type RecA by the filamentation dynamics on ssDNA. On the other hand, when replacing ATP to dATP, wild type RecA protein, changing the filamentation dynamics on ssDNA, also become more resistant to the RecX. On the basis of these data, a conclusion was drawn that filamentation dynamics is of substantially greater importance in the resistance of the RecA filament to the RecX than previously discussed protein-protein interactions RecA-RecX. We also propose an improved model of the RecA filament regulation by the RecX protein, according to which the RecA filament elongation along ssDNA is blocked by the RecX protein on the region of ssDNA located beyond the filament.</description><subject>Amino acids</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Enzymes</subject><subject>Human Genetics</subject><subject>Life Sciences</subject><subject>Molecular biology</subject><subject>Proteins</subject><subject>Structrural-Functional Analysis of Biopolymers and Their Complexes</subject><issn>0026-8933</issn><issn>1608-3245</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kdtKAzEQhoMoWKsP4F3wfjWTdHcTvCr1CILiAbxb0hw00mZrkr3oM_mSJlb0QoTAMDP__3-QQegQyDEAm5w8EEIbLhgDIIyQSbOFRtAQXjE6qbfRqKyrst9FezG-EQL50RH6mL1K_2Jwb7F1C7k0Psnkeo_12sulU7Fs7o2a4lXok3EeO68HZTSer_EZAL3H06XzPZbKaRyHeUwuDV8JfcDTxzuceqxLDWa1kMoUwmlu4rBIMYf9YMvMxSS9MsWTmc8_TKlK4j7asXIRzcF3HaOni_PH2VV1c3t5PZveVIpBnSpWKz0ngjVWqpYC0cCUstxSNeFCNpLwVlGihaS5s8JqYXltaMvAtnNRSzZGR5vcjH8fTEzdWz8En5Edb0FwIoBnEWxEKvQxBmO7VXBLGdYdkK6cpPtzkuyhG0_M2vzr4Tf4f9Mnp_-PSg</recordid><startdate>20110601</startdate><enddate>20110601</enddate><creator>Dudkina, A. V.</creator><creator>Schvetsov, A. V.</creator><creator>Bakhlanova, I. V.</creator><creator>Baitin, D. M.</creator><general>SP MAIK Nauka/Interperiodica</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope></search><sort><creationdate>20110601</creationdate><title>Change of filamentation dynamics of RecA protein induced by D112R Amino acid substitution or ATP to dATP replacement; results in filament resistance to RecX protein action</title><author>Dudkina, A. V. ; Schvetsov, A. V. ; Bakhlanova, I. V. ; Baitin, D. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c315t-35cdb0936fac7210d13ccf8f2c489a6a087c20d9a29a6f9fd9f85e2731f7b95a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Amino acids</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Enzymes</topic><topic>Human Genetics</topic><topic>Life Sciences</topic><topic>Molecular biology</topic><topic>Proteins</topic><topic>Structrural-Functional Analysis of Biopolymers and Their Complexes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dudkina, A. V.</creatorcontrib><creatorcontrib>Schvetsov, A. V.</creatorcontrib><creatorcontrib>Bakhlanova, I. V.</creatorcontrib><creatorcontrib>Baitin, D. M.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><jtitle>Molecular biology (New York)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dudkina, A. V.</au><au>Schvetsov, A. V.</au><au>Bakhlanova, I. V.</au><au>Baitin, D. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Change of filamentation dynamics of RecA protein induced by D112R Amino acid substitution or ATP to dATP replacement; results in filament resistance to RecX protein action</atitle><jtitle>Molecular biology (New York)</jtitle><stitle>Mol Biol</stitle><date>2011-06-01</date><risdate>2011</risdate><volume>45</volume><issue>3</issue><spage>500</spage><epage>507</epage><pages>500-507</pages><issn>0026-8933</issn><eissn>1608-3245</eissn><abstract>It was discovered that the mutant D112R RecA protein is more resistant to the action of its negative regulator, the RecX protein, than wild type protein both in vitro and in vivo. By means of molecular modeling methods, we showed that amino-acid residue at the position 112 cannot approach the RecX closer than 25–28 Å. Thus, direct contact between the amino acid residue and the RecX is not possible. The RecA D112R protein more actively competes with the SSB protein for the binding sites on single-stranded DNA (ssDNA) and, therefore, differs from wild type RecA by the filamentation dynamics on ssDNA. On the other hand, when replacing ATP to dATP, wild type RecA protein, changing the filamentation dynamics on ssDNA, also become more resistant to the RecX. On the basis of these data, a conclusion was drawn that filamentation dynamics is of substantially greater importance in the resistance of the RecA filament to the RecX than previously discussed protein-protein interactions RecA-RecX. We also propose an improved model of the RecA filament regulation by the RecX protein, according to which the RecA filament elongation along ssDNA is blocked by the RecX protein on the region of ssDNA located beyond the filament.</abstract><cop>Dordrecht</cop><pub>SP MAIK Nauka/Interperiodica</pub><doi>10.1134/S0026893311030046</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0026-8933
ispartof Molecular biology (New York), 2011-06, Vol.45 (3), p.500-507
issn 0026-8933
1608-3245
language eng
recordid cdi_proquest_journals_871980918
source SpringerLink Journals - AutoHoldings
subjects Amino acids
Biochemistry
Biomedical and Life Sciences
Enzymes
Human Genetics
Life Sciences
Molecular biology
Proteins
Structrural-Functional Analysis of Biopolymers and Their Complexes
title Change of filamentation dynamics of RecA protein induced by D112R Amino acid substitution or ATP to dATP replacement; results in filament resistance to RecX protein action
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T21%3A13%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Change%20of%20filamentation%20dynamics%20of%20RecA%20protein%20induced%20by%20D112R%20Amino%20acid%20substitution%20or%20ATP%20to%20dATP%20replacement;%20results%20in%20filament%20resistance%20to%20RecX%20protein%20action&rft.jtitle=Molecular%20biology%20(New%20York)&rft.au=Dudkina,%20A.%20V.&rft.date=2011-06-01&rft.volume=45&rft.issue=3&rft.spage=500&rft.epage=507&rft.pages=500-507&rft.issn=0026-8933&rft.eissn=1608-3245&rft_id=info:doi/10.1134/S0026893311030046&rft_dat=%3Cproquest_cross%3E2375997141%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=871980918&rft_id=info:pmid/&rfr_iscdi=true