Reducing Surgical Ward Congestion Through Improved Surgical Scheduling and Uncapacitated Simulation

High surgical bed occupancy levels often result in heightened staff stress, frequent surgical cancellations, and long surgical wait times. This congestion is in part attributable to surgical scheduling practices, which often focus on the efficient use of operating rooms but ignore resulting downstre...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Production and operations management 2011-05, Vol.20 (3), p.418-430
Hauptverfasser: Chow, Vincent S., Puterman, Martin L., Salehirad, Neda, Huang, Wenhai, Atkins, Derek
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 430
container_issue 3
container_start_page 418
container_title Production and operations management
container_volume 20
creator Chow, Vincent S.
Puterman, Martin L.
Salehirad, Neda
Huang, Wenhai
Atkins, Derek
description High surgical bed occupancy levels often result in heightened staff stress, frequent surgical cancellations, and long surgical wait times. This congestion is in part attributable to surgical scheduling practices, which often focus on the efficient use of operating rooms but ignore resulting downstream bed utilization. This paper describes a transparent and portable approach to improve scheduling practices, which combines a Monte Carlo simulation model and a mixed integer programming (MIP) model. For a specified surgical schedule, the simulation samples from historical case records and predicts bed requirements assuming no resource constraints. The MIP model complements the simulation model by scheduling both surgeon blocks and patient types to reduce peak bed occupancies. Scheduling guidelines were developed from the optimized schedules to provide surgical planners with a simple and implementable alternative to the MIP model. This approach has been tested and delivered to planners in a health authority in British Columbia, Canada. The models have been used to propose new surgical schedules and to evaluate the impact of proposed system changes on ward congestion.
doi_str_mv 10.1111/j.1937-5956.2011.01226.x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_871506966</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1111_j.1937-5956.2011.01226.x</sage_id><sourcerecordid>2373369941</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4566-f983a0e7f24121ddbe29ccbd22043b953cb345a4e1a8a37e08199ac3c62df85c3</originalsourceid><addsrcrecordid>eNqNkF9PgzAUxYnRxDn9DsR3sH9ooS8mZupcMt0iW5b40pRSGMhgFtDt21vEbK_rS29yz--cm2NZNgQuNO8udyHDvkMYoS4CELoAIkTd3Zk1OCzOzQwIc6DnB5fWVV3nAAAfIzCw5LuKW5mVqR22Os2kKOyV0LE9qspU1U1WlfZiras2XduTzVZX3yo-KkO5NnTR0aKM7WUpxVbIrBFNp8o2bSE6h2vrIhFFrW7-_6G1fH5ajF6c6Ww8GT1MHekRSp2EBVgA5SfIgwjGcaQQkzKKEQIejhjBMsIeEZ6CIhDYVyCAjAmJJUVxEhCJh9Zt72vu_GrN9TyvWl2aSB74kADKKDWioBdJXdW1Vgnf6mwj9J5DwLtGec674nhXHO8a5X-N8p1B73v0JyvU_mSOz2evYTcaA9Ib1CJVx-NOCHZ6LqsbtTsEC_3JqY99wldvY_74QeB8FSAe4l9MCJz5</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>871506966</pqid></control><display><type>article</type><title>Reducing Surgical Ward Congestion Through Improved Surgical Scheduling and Uncapacitated Simulation</title><source>Wiley Online Library Journals Frontfile Complete</source><source>SAGE Complete</source><source>Business Source Complete</source><creator>Chow, Vincent S. ; Puterman, Martin L. ; Salehirad, Neda ; Huang, Wenhai ; Atkins, Derek</creator><creatorcontrib>Chow, Vincent S. ; Puterman, Martin L. ; Salehirad, Neda ; Huang, Wenhai ; Atkins, Derek</creatorcontrib><description>High surgical bed occupancy levels often result in heightened staff stress, frequent surgical cancellations, and long surgical wait times. This congestion is in part attributable to surgical scheduling practices, which often focus on the efficient use of operating rooms but ignore resulting downstream bed utilization. This paper describes a transparent and portable approach to improve scheduling practices, which combines a Monte Carlo simulation model and a mixed integer programming (MIP) model. For a specified surgical schedule, the simulation samples from historical case records and predicts bed requirements assuming no resource constraints. The MIP model complements the simulation model by scheduling both surgeon blocks and patient types to reduce peak bed occupancies. Scheduling guidelines were developed from the optimized schedules to provide surgical planners with a simple and implementable alternative to the MIP model. This approach has been tested and delivered to planners in a health authority in British Columbia, Canada. The models have been used to propose new surgical schedules and to evaluate the impact of proposed system changes on ward congestion.</description><identifier>ISSN: 1059-1478</identifier><identifier>EISSN: 1937-5956</identifier><identifier>DOI: 10.1111/j.1937-5956.2011.01226.x</identifier><identifier>CODEN: POMAEN</identifier><language>eng</language><publisher>Malden, USA: Blackwell Publishing Inc</publisher><subject>hospital bed management ; Hospitals ; Integer programming ; Integrated approach ; mixed integer programming ; Monte Carlo simulation ; Operations management ; Optimization techniques ; Patients ; Planning ; Revisions ; Schedules ; Scheduling ; scheduling guidelines ; Studies ; Surgeons ; Surgery ; surgical scheduling</subject><ispartof>Production and operations management, 2011-05, Vol.20 (3), p.418-430</ispartof><rights>2011 The Authors</rights><rights>2011 Production and Operations Management Society</rights><rights>Copyright Blackwell Publishers Inc. May/Jun 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4566-f983a0e7f24121ddbe29ccbd22043b953cb345a4e1a8a37e08199ac3c62df85c3</citedby><cites>FETCH-LOGICAL-c4566-f983a0e7f24121ddbe29ccbd22043b953cb345a4e1a8a37e08199ac3c62df85c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1111/j.1937-5956.2011.01226.x$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1111/j.1937-5956.2011.01226.x$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,776,780,1411,21799,27903,27904,43600,43601,45553,45554</link.rule.ids></links><search><creatorcontrib>Chow, Vincent S.</creatorcontrib><creatorcontrib>Puterman, Martin L.</creatorcontrib><creatorcontrib>Salehirad, Neda</creatorcontrib><creatorcontrib>Huang, Wenhai</creatorcontrib><creatorcontrib>Atkins, Derek</creatorcontrib><title>Reducing Surgical Ward Congestion Through Improved Surgical Scheduling and Uncapacitated Simulation</title><title>Production and operations management</title><description>High surgical bed occupancy levels often result in heightened staff stress, frequent surgical cancellations, and long surgical wait times. This congestion is in part attributable to surgical scheduling practices, which often focus on the efficient use of operating rooms but ignore resulting downstream bed utilization. This paper describes a transparent and portable approach to improve scheduling practices, which combines a Monte Carlo simulation model and a mixed integer programming (MIP) model. For a specified surgical schedule, the simulation samples from historical case records and predicts bed requirements assuming no resource constraints. The MIP model complements the simulation model by scheduling both surgeon blocks and patient types to reduce peak bed occupancies. Scheduling guidelines were developed from the optimized schedules to provide surgical planners with a simple and implementable alternative to the MIP model. This approach has been tested and delivered to planners in a health authority in British Columbia, Canada. The models have been used to propose new surgical schedules and to evaluate the impact of proposed system changes on ward congestion.</description><subject>hospital bed management</subject><subject>Hospitals</subject><subject>Integer programming</subject><subject>Integrated approach</subject><subject>mixed integer programming</subject><subject>Monte Carlo simulation</subject><subject>Operations management</subject><subject>Optimization techniques</subject><subject>Patients</subject><subject>Planning</subject><subject>Revisions</subject><subject>Schedules</subject><subject>Scheduling</subject><subject>scheduling guidelines</subject><subject>Studies</subject><subject>Surgeons</subject><subject>Surgery</subject><subject>surgical scheduling</subject><issn>1059-1478</issn><issn>1937-5956</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNkF9PgzAUxYnRxDn9DsR3sH9ooS8mZupcMt0iW5b40pRSGMhgFtDt21vEbK_rS29yz--cm2NZNgQuNO8udyHDvkMYoS4CELoAIkTd3Zk1OCzOzQwIc6DnB5fWVV3nAAAfIzCw5LuKW5mVqR22Os2kKOyV0LE9qspU1U1WlfZiras2XduTzVZX3yo-KkO5NnTR0aKM7WUpxVbIrBFNp8o2bSE6h2vrIhFFrW7-_6G1fH5ajF6c6Ww8GT1MHekRSp2EBVgA5SfIgwjGcaQQkzKKEQIejhjBMsIeEZ6CIhDYVyCAjAmJJUVxEhCJh9Zt72vu_GrN9TyvWl2aSB74kADKKDWioBdJXdW1Vgnf6mwj9J5DwLtGec674nhXHO8a5X-N8p1B73v0JyvU_mSOz2evYTcaA9Ib1CJVx-NOCHZ6LqsbtTsEC_3JqY99wldvY_74QeB8FSAe4l9MCJz5</recordid><startdate>201105</startdate><enddate>201105</enddate><creator>Chow, Vincent S.</creator><creator>Puterman, Martin L.</creator><creator>Salehirad, Neda</creator><creator>Huang, Wenhai</creator><creator>Atkins, Derek</creator><general>Blackwell Publishing Inc</general><general>SAGE Publications</general><general>Blackwell Publishers Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AO</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>L.0</scope><scope>M0C</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>201105</creationdate><title>Reducing Surgical Ward Congestion Through Improved Surgical Scheduling and Uncapacitated Simulation</title><author>Chow, Vincent S. ; Puterman, Martin L. ; Salehirad, Neda ; Huang, Wenhai ; Atkins, Derek</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4566-f983a0e7f24121ddbe29ccbd22043b953cb345a4e1a8a37e08199ac3c62df85c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>hospital bed management</topic><topic>Hospitals</topic><topic>Integer programming</topic><topic>Integrated approach</topic><topic>mixed integer programming</topic><topic>Monte Carlo simulation</topic><topic>Operations management</topic><topic>Optimization techniques</topic><topic>Patients</topic><topic>Planning</topic><topic>Revisions</topic><topic>Schedules</topic><topic>Scheduling</topic><topic>scheduling guidelines</topic><topic>Studies</topic><topic>Surgeons</topic><topic>Surgery</topic><topic>surgical scheduling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chow, Vincent S.</creatorcontrib><creatorcontrib>Puterman, Martin L.</creatorcontrib><creatorcontrib>Salehirad, Neda</creatorcontrib><creatorcontrib>Huang, Wenhai</creatorcontrib><creatorcontrib>Atkins, Derek</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Global News &amp; ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ABI/INFORM Global</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Production and operations management</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chow, Vincent S.</au><au>Puterman, Martin L.</au><au>Salehirad, Neda</au><au>Huang, Wenhai</au><au>Atkins, Derek</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reducing Surgical Ward Congestion Through Improved Surgical Scheduling and Uncapacitated Simulation</atitle><jtitle>Production and operations management</jtitle><date>2011-05</date><risdate>2011</risdate><volume>20</volume><issue>3</issue><spage>418</spage><epage>430</epage><pages>418-430</pages><issn>1059-1478</issn><eissn>1937-5956</eissn><coden>POMAEN</coden><abstract>High surgical bed occupancy levels often result in heightened staff stress, frequent surgical cancellations, and long surgical wait times. This congestion is in part attributable to surgical scheduling practices, which often focus on the efficient use of operating rooms but ignore resulting downstream bed utilization. This paper describes a transparent and portable approach to improve scheduling practices, which combines a Monte Carlo simulation model and a mixed integer programming (MIP) model. For a specified surgical schedule, the simulation samples from historical case records and predicts bed requirements assuming no resource constraints. The MIP model complements the simulation model by scheduling both surgeon blocks and patient types to reduce peak bed occupancies. Scheduling guidelines were developed from the optimized schedules to provide surgical planners with a simple and implementable alternative to the MIP model. This approach has been tested and delivered to planners in a health authority in British Columbia, Canada. The models have been used to propose new surgical schedules and to evaluate the impact of proposed system changes on ward congestion.</abstract><cop>Malden, USA</cop><pub>Blackwell Publishing Inc</pub><doi>10.1111/j.1937-5956.2011.01226.x</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1059-1478
ispartof Production and operations management, 2011-05, Vol.20 (3), p.418-430
issn 1059-1478
1937-5956
language eng
recordid cdi_proquest_journals_871506966
source Wiley Online Library Journals Frontfile Complete; SAGE Complete; Business Source Complete
subjects hospital bed management
Hospitals
Integer programming
Integrated approach
mixed integer programming
Monte Carlo simulation
Operations management
Optimization techniques
Patients
Planning
Revisions
Schedules
Scheduling
scheduling guidelines
Studies
Surgeons
Surgery
surgical scheduling
title Reducing Surgical Ward Congestion Through Improved Surgical Scheduling and Uncapacitated Simulation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T11%3A27%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reducing%20Surgical%20Ward%20Congestion%20Through%20Improved%20Surgical%20Scheduling%20and%20Uncapacitated%20Simulation&rft.jtitle=Production%20and%20operations%20management&rft.au=Chow,%20Vincent%20S.&rft.date=2011-05&rft.volume=20&rft.issue=3&rft.spage=418&rft.epage=430&rft.pages=418-430&rft.issn=1059-1478&rft.eissn=1937-5956&rft.coden=POMAEN&rft_id=info:doi/10.1111/j.1937-5956.2011.01226.x&rft_dat=%3Cproquest_cross%3E2373369941%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=871506966&rft_id=info:pmid/&rft_sage_id=10.1111_j.1937-5956.2011.01226.x&rfr_iscdi=true