Effects of Mountains and Ice Sheets on Global Ocean Circulation

The impact of mountains and ice sheets on the large-scale circulation of the world’s oceans is investigated in a series of simulations with a new coupled ocean–atmosphere model [Oregon State University–University of Victoria model (OSUVic)], in which the height of orography is scaled from 1.5 times...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of climate 2011-06, Vol.24 (11), p.2814-2829
Hauptverfasser: Schmittner, Andreas, Silva, Tiago A. M., Fraedrich, Klaus, Kirk, Edilbert, Lunkeit, Frank
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2829
container_issue 11
container_start_page 2814
container_title Journal of climate
container_volume 24
creator Schmittner, Andreas
Silva, Tiago A. M.
Fraedrich, Klaus
Kirk, Edilbert
Lunkeit, Frank
description The impact of mountains and ice sheets on the large-scale circulation of the world’s oceans is investigated in a series of simulations with a new coupled ocean–atmosphere model [Oregon State University–University of Victoria model (OSUVic)], in which the height of orography is scaled from 1.5 times the actual height (at T42 resolution) to 0 (no mountains). The results suggest that the effects of mountains and ice sheets on the buoyancy and momentum transfer from the atmosphere to the surface ocean determine the present pattern of deep ocean circulation. Higher mountains reduce water vapor transport from the Pacific and Indian Oceans into the Atlantic Ocean and contribute to increased (decreased) salinities and enhanced (reduced) deep-water formation and meridional overturning circulation in the Atlantic (Pacific). Orographic effects also lead to the observed interhemispheric asymmetry of midlatitude zonal wind stress. The presence of the Antarctic ice sheet cools winter air temperatures by more than 20°C directly above the ice sheet and sets up a polar meridional overturning cell in the atmosphere. The resulting increased meridional temperature gradient strengthens midlatitude westerlies by ∼25% and shifts them poleward by ∼10°. This leads to enhanced and poleward-shifted upwelling of deep waters in the Southern Ocean, a stronger Antarctic Circumpolar Current, increased poleward atmospheric moisture transport, and more advection of high-salinity Indian Ocean water into the South Atlantic. Thus, it is the current configuration of mountains and ice sheets on earth that determines the difference in deep-water formation between the Atlantic and the Pacific.
doi_str_mv 10.1175/2010jcli3982.1
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_871412580</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26190538</jstor_id><sourcerecordid>26190538</sourcerecordid><originalsourceid>FETCH-LOGICAL-c452t-4f33c0d5c353ef01803c5b30dfa9e16646def96f07d7ba6fd62195fc4661d1ec3</originalsourceid><addsrcrecordid>eNp1kD1PwzAURS0EEqWwsiFZIMaU9_yVZEIoKqWoqAMwR65ji1TBKXYy8O9J1Aompjfcc8-TLiGXCDPEVN4xQNiapuZ5xmZ4RCYoGSQgBDsmE8hykWSplKfkLMYtADIFMCH3c-es6SJtHX1pe9_p2keqfUWXxtLXD2vHzNNF0250Q9fGak-LOpi-0V3d-nNy4nQT7cXhTsn74_yteEpW68WyeFglRkjWJcJxbqCShktuHWAG3MgNh8rp3KJSQlXW5cpBWqUbrVylGObSGaEUVmgNn5LrvXcX2q_exq7ctn3ww8syS1Egk4NySm7-g1iGgqeDlQ_UbE-Z0MYYrCt3of7U4btEKMcly3HJ52K1HJcscSjcHrQ6Gt24oL2p42-LCcazVIiBu9pz29i14S9XmIPkGf8BGFZ6fw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2814376213</pqid></control><display><type>article</type><title>Effects of Mountains and Ice Sheets on Global Ocean Circulation</title><source>Jstor Complete Legacy</source><source>American Meteorological Society</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Schmittner, Andreas ; Silva, Tiago A. M. ; Fraedrich, Klaus ; Kirk, Edilbert ; Lunkeit, Frank</creator><creatorcontrib>Schmittner, Andreas ; Silva, Tiago A. M. ; Fraedrich, Klaus ; Kirk, Edilbert ; Lunkeit, Frank</creatorcontrib><description>The impact of mountains and ice sheets on the large-scale circulation of the world’s oceans is investigated in a series of simulations with a new coupled ocean–atmosphere model [Oregon State University–University of Victoria model (OSUVic)], in which the height of orography is scaled from 1.5 times the actual height (at T42 resolution) to 0 (no mountains). The results suggest that the effects of mountains and ice sheets on the buoyancy and momentum transfer from the atmosphere to the surface ocean determine the present pattern of deep ocean circulation. Higher mountains reduce water vapor transport from the Pacific and Indian Oceans into the Atlantic Ocean and contribute to increased (decreased) salinities and enhanced (reduced) deep-water formation and meridional overturning circulation in the Atlantic (Pacific). Orographic effects also lead to the observed interhemispheric asymmetry of midlatitude zonal wind stress. The presence of the Antarctic ice sheet cools winter air temperatures by more than 20°C directly above the ice sheet and sets up a polar meridional overturning cell in the atmosphere. The resulting increased meridional temperature gradient strengthens midlatitude westerlies by ∼25% and shifts them poleward by ∼10°. This leads to enhanced and poleward-shifted upwelling of deep waters in the Southern Ocean, a stronger Antarctic Circumpolar Current, increased poleward atmospheric moisture transport, and more advection of high-salinity Indian Ocean water into the South Atlantic. Thus, it is the current configuration of mountains and ice sheets on earth that determines the difference in deep-water formation between the Atlantic and the Pacific.</description><identifier>ISSN: 0894-8755</identifier><identifier>EISSN: 1520-0442</identifier><identifier>DOI: 10.1175/2010jcli3982.1</identifier><language>eng</language><publisher>Boston, MA: American Meteorological Society</publisher><subject>Advection ; Air temperature ; Antarctic Circumpolar Current ; Antarctic ice sheet ; Atmosphere ; Atmospheric circulation ; Atmospheric models ; Atmospheric moisture ; Cerebral hemispheres ; Circulation ; Climate change ; Climate models ; Deep water ; Deep water formation ; Earth, ocean, space ; Exact sciences and technology ; Experiments ; External geophysics ; Fresh water ; General circulation models ; Glaciation ; Height ; Ice ; Ice sheets ; Latitude ; Meridional overturning circulation ; Meteorology ; Moisture effects ; Momentum ; Momentum transfer ; Mountains ; Ocean circulation ; Ocean circulation patterns ; Ocean currents ; Ocean-atmosphere interaction ; Oceans ; Orographic effects ; Orography ; Precipitation ; Salinity ; Seawater ; Simulations ; Temperature gradients ; Transport ; Upwelling ; Water circulation ; Water vapor ; Water vapor transport ; Water vapour ; Westerlies ; Wind stress ; Zonal winds</subject><ispartof>Journal of climate, 2011-06, Vol.24 (11), p.2814-2829</ispartof><rights>2011 American Meteorological Society</rights><rights>2015 INIST-CNRS</rights><rights>Copyright American Meteorological Society 2011</rights><rights>Copyright American Meteorological Society Jun 1, 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c452t-4f33c0d5c353ef01803c5b30dfa9e16646def96f07d7ba6fd62195fc4661d1ec3</citedby><cites>FETCH-LOGICAL-c452t-4f33c0d5c353ef01803c5b30dfa9e16646def96f07d7ba6fd62195fc4661d1ec3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26190538$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26190538$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,3668,27901,27902,57992,58225</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24238744$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Schmittner, Andreas</creatorcontrib><creatorcontrib>Silva, Tiago A. M.</creatorcontrib><creatorcontrib>Fraedrich, Klaus</creatorcontrib><creatorcontrib>Kirk, Edilbert</creatorcontrib><creatorcontrib>Lunkeit, Frank</creatorcontrib><title>Effects of Mountains and Ice Sheets on Global Ocean Circulation</title><title>Journal of climate</title><description>The impact of mountains and ice sheets on the large-scale circulation of the world’s oceans is investigated in a series of simulations with a new coupled ocean–atmosphere model [Oregon State University–University of Victoria model (OSUVic)], in which the height of orography is scaled from 1.5 times the actual height (at T42 resolution) to 0 (no mountains). The results suggest that the effects of mountains and ice sheets on the buoyancy and momentum transfer from the atmosphere to the surface ocean determine the present pattern of deep ocean circulation. Higher mountains reduce water vapor transport from the Pacific and Indian Oceans into the Atlantic Ocean and contribute to increased (decreased) salinities and enhanced (reduced) deep-water formation and meridional overturning circulation in the Atlantic (Pacific). Orographic effects also lead to the observed interhemispheric asymmetry of midlatitude zonal wind stress. The presence of the Antarctic ice sheet cools winter air temperatures by more than 20°C directly above the ice sheet and sets up a polar meridional overturning cell in the atmosphere. The resulting increased meridional temperature gradient strengthens midlatitude westerlies by ∼25% and shifts them poleward by ∼10°. This leads to enhanced and poleward-shifted upwelling of deep waters in the Southern Ocean, a stronger Antarctic Circumpolar Current, increased poleward atmospheric moisture transport, and more advection of high-salinity Indian Ocean water into the South Atlantic. Thus, it is the current configuration of mountains and ice sheets on earth that determines the difference in deep-water formation between the Atlantic and the Pacific.</description><subject>Advection</subject><subject>Air temperature</subject><subject>Antarctic Circumpolar Current</subject><subject>Antarctic ice sheet</subject><subject>Atmosphere</subject><subject>Atmospheric circulation</subject><subject>Atmospheric models</subject><subject>Atmospheric moisture</subject><subject>Cerebral hemispheres</subject><subject>Circulation</subject><subject>Climate change</subject><subject>Climate models</subject><subject>Deep water</subject><subject>Deep water formation</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>Experiments</subject><subject>External geophysics</subject><subject>Fresh water</subject><subject>General circulation models</subject><subject>Glaciation</subject><subject>Height</subject><subject>Ice</subject><subject>Ice sheets</subject><subject>Latitude</subject><subject>Meridional overturning circulation</subject><subject>Meteorology</subject><subject>Moisture effects</subject><subject>Momentum</subject><subject>Momentum transfer</subject><subject>Mountains</subject><subject>Ocean circulation</subject><subject>Ocean circulation patterns</subject><subject>Ocean currents</subject><subject>Ocean-atmosphere interaction</subject><subject>Oceans</subject><subject>Orographic effects</subject><subject>Orography</subject><subject>Precipitation</subject><subject>Salinity</subject><subject>Seawater</subject><subject>Simulations</subject><subject>Temperature gradients</subject><subject>Transport</subject><subject>Upwelling</subject><subject>Water circulation</subject><subject>Water vapor</subject><subject>Water vapor transport</subject><subject>Water vapour</subject><subject>Westerlies</subject><subject>Wind stress</subject><subject>Zonal winds</subject><issn>0894-8755</issn><issn>1520-0442</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kD1PwzAURS0EEqWwsiFZIMaU9_yVZEIoKqWoqAMwR65ji1TBKXYy8O9J1Aompjfcc8-TLiGXCDPEVN4xQNiapuZ5xmZ4RCYoGSQgBDsmE8hykWSplKfkLMYtADIFMCH3c-es6SJtHX1pe9_p2keqfUWXxtLXD2vHzNNF0250Q9fGak-LOpi-0V3d-nNy4nQT7cXhTsn74_yteEpW68WyeFglRkjWJcJxbqCShktuHWAG3MgNh8rp3KJSQlXW5cpBWqUbrVylGObSGaEUVmgNn5LrvXcX2q_exq7ctn3ww8syS1Egk4NySm7-g1iGgqeDlQ_UbE-Z0MYYrCt3of7U4btEKMcly3HJ52K1HJcscSjcHrQ6Gt24oL2p42-LCcazVIiBu9pz29i14S9XmIPkGf8BGFZ6fw</recordid><startdate>20110601</startdate><enddate>20110601</enddate><creator>Schmittner, Andreas</creator><creator>Silva, Tiago A. M.</creator><creator>Fraedrich, Klaus</creator><creator>Kirk, Edilbert</creator><creator>Lunkeit, Frank</creator><general>American Meteorological Society</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7TG</scope><scope>7UA</scope><scope>7X2</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8AF</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>M0K</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20110601</creationdate><title>Effects of Mountains and Ice Sheets on Global Ocean Circulation</title><author>Schmittner, Andreas ; Silva, Tiago A. M. ; Fraedrich, Klaus ; Kirk, Edilbert ; Lunkeit, Frank</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c452t-4f33c0d5c353ef01803c5b30dfa9e16646def96f07d7ba6fd62195fc4661d1ec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Advection</topic><topic>Air temperature</topic><topic>Antarctic Circumpolar Current</topic><topic>Antarctic ice sheet</topic><topic>Atmosphere</topic><topic>Atmospheric circulation</topic><topic>Atmospheric models</topic><topic>Atmospheric moisture</topic><topic>Cerebral hemispheres</topic><topic>Circulation</topic><topic>Climate change</topic><topic>Climate models</topic><topic>Deep water</topic><topic>Deep water formation</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>Experiments</topic><topic>External geophysics</topic><topic>Fresh water</topic><topic>General circulation models</topic><topic>Glaciation</topic><topic>Height</topic><topic>Ice</topic><topic>Ice sheets</topic><topic>Latitude</topic><topic>Meridional overturning circulation</topic><topic>Meteorology</topic><topic>Moisture effects</topic><topic>Momentum</topic><topic>Momentum transfer</topic><topic>Mountains</topic><topic>Ocean circulation</topic><topic>Ocean circulation patterns</topic><topic>Ocean currents</topic><topic>Ocean-atmosphere interaction</topic><topic>Oceans</topic><topic>Orographic effects</topic><topic>Orography</topic><topic>Precipitation</topic><topic>Salinity</topic><topic>Seawater</topic><topic>Simulations</topic><topic>Temperature gradients</topic><topic>Transport</topic><topic>Upwelling</topic><topic>Water circulation</topic><topic>Water vapor</topic><topic>Water vapor transport</topic><topic>Water vapour</topic><topic>Westerlies</topic><topic>Wind stress</topic><topic>Zonal winds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schmittner, Andreas</creatorcontrib><creatorcontrib>Silva, Tiago A. M.</creatorcontrib><creatorcontrib>Fraedrich, Klaus</creatorcontrib><creatorcontrib>Kirk, Edilbert</creatorcontrib><creatorcontrib>Lunkeit, Frank</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Agricultural Science Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Journal of climate</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schmittner, Andreas</au><au>Silva, Tiago A. M.</au><au>Fraedrich, Klaus</au><au>Kirk, Edilbert</au><au>Lunkeit, Frank</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effects of Mountains and Ice Sheets on Global Ocean Circulation</atitle><jtitle>Journal of climate</jtitle><date>2011-06-01</date><risdate>2011</risdate><volume>24</volume><issue>11</issue><spage>2814</spage><epage>2829</epage><pages>2814-2829</pages><issn>0894-8755</issn><eissn>1520-0442</eissn><abstract>The impact of mountains and ice sheets on the large-scale circulation of the world’s oceans is investigated in a series of simulations with a new coupled ocean–atmosphere model [Oregon State University–University of Victoria model (OSUVic)], in which the height of orography is scaled from 1.5 times the actual height (at T42 resolution) to 0 (no mountains). The results suggest that the effects of mountains and ice sheets on the buoyancy and momentum transfer from the atmosphere to the surface ocean determine the present pattern of deep ocean circulation. Higher mountains reduce water vapor transport from the Pacific and Indian Oceans into the Atlantic Ocean and contribute to increased (decreased) salinities and enhanced (reduced) deep-water formation and meridional overturning circulation in the Atlantic (Pacific). Orographic effects also lead to the observed interhemispheric asymmetry of midlatitude zonal wind stress. The presence of the Antarctic ice sheet cools winter air temperatures by more than 20°C directly above the ice sheet and sets up a polar meridional overturning cell in the atmosphere. The resulting increased meridional temperature gradient strengthens midlatitude westerlies by ∼25% and shifts them poleward by ∼10°. This leads to enhanced and poleward-shifted upwelling of deep waters in the Southern Ocean, a stronger Antarctic Circumpolar Current, increased poleward atmospheric moisture transport, and more advection of high-salinity Indian Ocean water into the South Atlantic. Thus, it is the current configuration of mountains and ice sheets on earth that determines the difference in deep-water formation between the Atlantic and the Pacific.</abstract><cop>Boston, MA</cop><pub>American Meteorological Society</pub><doi>10.1175/2010jcli3982.1</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0894-8755
ispartof Journal of climate, 2011-06, Vol.24 (11), p.2814-2829
issn 0894-8755
1520-0442
language eng
recordid cdi_proquest_journals_871412580
source Jstor Complete Legacy; American Meteorological Society; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Advection
Air temperature
Antarctic Circumpolar Current
Antarctic ice sheet
Atmosphere
Atmospheric circulation
Atmospheric models
Atmospheric moisture
Cerebral hemispheres
Circulation
Climate change
Climate models
Deep water
Deep water formation
Earth, ocean, space
Exact sciences and technology
Experiments
External geophysics
Fresh water
General circulation models
Glaciation
Height
Ice
Ice sheets
Latitude
Meridional overturning circulation
Meteorology
Moisture effects
Momentum
Momentum transfer
Mountains
Ocean circulation
Ocean circulation patterns
Ocean currents
Ocean-atmosphere interaction
Oceans
Orographic effects
Orography
Precipitation
Salinity
Seawater
Simulations
Temperature gradients
Transport
Upwelling
Water circulation
Water vapor
Water vapor transport
Water vapour
Westerlies
Wind stress
Zonal winds
title Effects of Mountains and Ice Sheets on Global Ocean Circulation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T03%3A44%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effects%20of%20Mountains%20and%20Ice%20Sheets%20on%20Global%20Ocean%20Circulation&rft.jtitle=Journal%20of%20climate&rft.au=Schmittner,%20Andreas&rft.date=2011-06-01&rft.volume=24&rft.issue=11&rft.spage=2814&rft.epage=2829&rft.pages=2814-2829&rft.issn=0894-8755&rft.eissn=1520-0442&rft_id=info:doi/10.1175/2010jcli3982.1&rft_dat=%3Cjstor_proqu%3E26190538%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2814376213&rft_id=info:pmid/&rft_jstor_id=26190538&rfr_iscdi=true