Effects of Mountains and Ice Sheets on Global Ocean Circulation
The impact of mountains and ice sheets on the large-scale circulation of the world’s oceans is investigated in a series of simulations with a new coupled ocean–atmosphere model [Oregon State University–University of Victoria model (OSUVic)], in which the height of orography is scaled from 1.5 times...
Gespeichert in:
Veröffentlicht in: | Journal of climate 2011-06, Vol.24 (11), p.2814-2829 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2829 |
---|---|
container_issue | 11 |
container_start_page | 2814 |
container_title | Journal of climate |
container_volume | 24 |
creator | Schmittner, Andreas Silva, Tiago A. M. Fraedrich, Klaus Kirk, Edilbert Lunkeit, Frank |
description | The impact of mountains and ice sheets on the large-scale circulation of the world’s oceans is investigated in a series of simulations with a new coupled ocean–atmosphere model [Oregon State University–University of Victoria model (OSUVic)], in which the height of orography is scaled from 1.5 times the actual height (at T42 resolution) to 0 (no mountains). The results suggest that the effects of mountains and ice sheets on the buoyancy and momentum transfer from the atmosphere to the surface ocean determine the present pattern of deep ocean circulation. Higher mountains reduce water vapor transport from the Pacific and Indian Oceans into the Atlantic Ocean and contribute to increased (decreased) salinities and enhanced (reduced) deep-water formation and meridional overturning circulation in the Atlantic (Pacific). Orographic effects also lead to the observed interhemispheric asymmetry of midlatitude zonal wind stress. The presence of the Antarctic ice sheet cools winter air temperatures by more than 20°C directly above the ice sheet and sets up a polar meridional overturning cell in the atmosphere. The resulting increased meridional temperature gradient strengthens midlatitude westerlies by ∼25% and shifts them poleward by ∼10°. This leads to enhanced and poleward-shifted upwelling of deep waters in the Southern Ocean, a stronger Antarctic Circumpolar Current, increased poleward atmospheric moisture transport, and more advection of high-salinity Indian Ocean water into the South Atlantic. Thus, it is the current configuration of mountains and ice sheets on earth that determines the difference in deep-water formation between the Atlantic and the Pacific. |
doi_str_mv | 10.1175/2010jcli3982.1 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_871412580</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26190538</jstor_id><sourcerecordid>26190538</sourcerecordid><originalsourceid>FETCH-LOGICAL-c452t-4f33c0d5c353ef01803c5b30dfa9e16646def96f07d7ba6fd62195fc4661d1ec3</originalsourceid><addsrcrecordid>eNp1kD1PwzAURS0EEqWwsiFZIMaU9_yVZEIoKqWoqAMwR65ji1TBKXYy8O9J1Aompjfcc8-TLiGXCDPEVN4xQNiapuZ5xmZ4RCYoGSQgBDsmE8hykWSplKfkLMYtADIFMCH3c-es6SJtHX1pe9_p2keqfUWXxtLXD2vHzNNF0250Q9fGak-LOpi-0V3d-nNy4nQT7cXhTsn74_yteEpW68WyeFglRkjWJcJxbqCShktuHWAG3MgNh8rp3KJSQlXW5cpBWqUbrVylGObSGaEUVmgNn5LrvXcX2q_exq7ctn3ww8syS1Egk4NySm7-g1iGgqeDlQ_UbE-Z0MYYrCt3of7U4btEKMcly3HJ52K1HJcscSjcHrQ6Gt24oL2p42-LCcazVIiBu9pz29i14S9XmIPkGf8BGFZ6fw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2814376213</pqid></control><display><type>article</type><title>Effects of Mountains and Ice Sheets on Global Ocean Circulation</title><source>Jstor Complete Legacy</source><source>American Meteorological Society</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Schmittner, Andreas ; Silva, Tiago A. M. ; Fraedrich, Klaus ; Kirk, Edilbert ; Lunkeit, Frank</creator><creatorcontrib>Schmittner, Andreas ; Silva, Tiago A. M. ; Fraedrich, Klaus ; Kirk, Edilbert ; Lunkeit, Frank</creatorcontrib><description>The impact of mountains and ice sheets on the large-scale circulation of the world’s oceans is investigated in a series of simulations with a new coupled ocean–atmosphere model [Oregon State University–University of Victoria model (OSUVic)], in which the height of orography is scaled from 1.5 times the actual height (at T42 resolution) to 0 (no mountains). The results suggest that the effects of mountains and ice sheets on the buoyancy and momentum transfer from the atmosphere to the surface ocean determine the present pattern of deep ocean circulation. Higher mountains reduce water vapor transport from the Pacific and Indian Oceans into the Atlantic Ocean and contribute to increased (decreased) salinities and enhanced (reduced) deep-water formation and meridional overturning circulation in the Atlantic (Pacific). Orographic effects also lead to the observed interhemispheric asymmetry of midlatitude zonal wind stress. The presence of the Antarctic ice sheet cools winter air temperatures by more than 20°C directly above the ice sheet and sets up a polar meridional overturning cell in the atmosphere. The resulting increased meridional temperature gradient strengthens midlatitude westerlies by ∼25% and shifts them poleward by ∼10°. This leads to enhanced and poleward-shifted upwelling of deep waters in the Southern Ocean, a stronger Antarctic Circumpolar Current, increased poleward atmospheric moisture transport, and more advection of high-salinity Indian Ocean water into the South Atlantic. Thus, it is the current configuration of mountains and ice sheets on earth that determines the difference in deep-water formation between the Atlantic and the Pacific.</description><identifier>ISSN: 0894-8755</identifier><identifier>EISSN: 1520-0442</identifier><identifier>DOI: 10.1175/2010jcli3982.1</identifier><language>eng</language><publisher>Boston, MA: American Meteorological Society</publisher><subject>Advection ; Air temperature ; Antarctic Circumpolar Current ; Antarctic ice sheet ; Atmosphere ; Atmospheric circulation ; Atmospheric models ; Atmospheric moisture ; Cerebral hemispheres ; Circulation ; Climate change ; Climate models ; Deep water ; Deep water formation ; Earth, ocean, space ; Exact sciences and technology ; Experiments ; External geophysics ; Fresh water ; General circulation models ; Glaciation ; Height ; Ice ; Ice sheets ; Latitude ; Meridional overturning circulation ; Meteorology ; Moisture effects ; Momentum ; Momentum transfer ; Mountains ; Ocean circulation ; Ocean circulation patterns ; Ocean currents ; Ocean-atmosphere interaction ; Oceans ; Orographic effects ; Orography ; Precipitation ; Salinity ; Seawater ; Simulations ; Temperature gradients ; Transport ; Upwelling ; Water circulation ; Water vapor ; Water vapor transport ; Water vapour ; Westerlies ; Wind stress ; Zonal winds</subject><ispartof>Journal of climate, 2011-06, Vol.24 (11), p.2814-2829</ispartof><rights>2011 American Meteorological Society</rights><rights>2015 INIST-CNRS</rights><rights>Copyright American Meteorological Society 2011</rights><rights>Copyright American Meteorological Society Jun 1, 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c452t-4f33c0d5c353ef01803c5b30dfa9e16646def96f07d7ba6fd62195fc4661d1ec3</citedby><cites>FETCH-LOGICAL-c452t-4f33c0d5c353ef01803c5b30dfa9e16646def96f07d7ba6fd62195fc4661d1ec3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26190538$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26190538$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,3668,27901,27902,57992,58225</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24238744$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Schmittner, Andreas</creatorcontrib><creatorcontrib>Silva, Tiago A. M.</creatorcontrib><creatorcontrib>Fraedrich, Klaus</creatorcontrib><creatorcontrib>Kirk, Edilbert</creatorcontrib><creatorcontrib>Lunkeit, Frank</creatorcontrib><title>Effects of Mountains and Ice Sheets on Global Ocean Circulation</title><title>Journal of climate</title><description>The impact of mountains and ice sheets on the large-scale circulation of the world’s oceans is investigated in a series of simulations with a new coupled ocean–atmosphere model [Oregon State University–University of Victoria model (OSUVic)], in which the height of orography is scaled from 1.5 times the actual height (at T42 resolution) to 0 (no mountains). The results suggest that the effects of mountains and ice sheets on the buoyancy and momentum transfer from the atmosphere to the surface ocean determine the present pattern of deep ocean circulation. Higher mountains reduce water vapor transport from the Pacific and Indian Oceans into the Atlantic Ocean and contribute to increased (decreased) salinities and enhanced (reduced) deep-water formation and meridional overturning circulation in the Atlantic (Pacific). Orographic effects also lead to the observed interhemispheric asymmetry of midlatitude zonal wind stress. The presence of the Antarctic ice sheet cools winter air temperatures by more than 20°C directly above the ice sheet and sets up a polar meridional overturning cell in the atmosphere. The resulting increased meridional temperature gradient strengthens midlatitude westerlies by ∼25% and shifts them poleward by ∼10°. This leads to enhanced and poleward-shifted upwelling of deep waters in the Southern Ocean, a stronger Antarctic Circumpolar Current, increased poleward atmospheric moisture transport, and more advection of high-salinity Indian Ocean water into the South Atlantic. Thus, it is the current configuration of mountains and ice sheets on earth that determines the difference in deep-water formation between the Atlantic and the Pacific.</description><subject>Advection</subject><subject>Air temperature</subject><subject>Antarctic Circumpolar Current</subject><subject>Antarctic ice sheet</subject><subject>Atmosphere</subject><subject>Atmospheric circulation</subject><subject>Atmospheric models</subject><subject>Atmospheric moisture</subject><subject>Cerebral hemispheres</subject><subject>Circulation</subject><subject>Climate change</subject><subject>Climate models</subject><subject>Deep water</subject><subject>Deep water formation</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>Experiments</subject><subject>External geophysics</subject><subject>Fresh water</subject><subject>General circulation models</subject><subject>Glaciation</subject><subject>Height</subject><subject>Ice</subject><subject>Ice sheets</subject><subject>Latitude</subject><subject>Meridional overturning circulation</subject><subject>Meteorology</subject><subject>Moisture effects</subject><subject>Momentum</subject><subject>Momentum transfer</subject><subject>Mountains</subject><subject>Ocean circulation</subject><subject>Ocean circulation patterns</subject><subject>Ocean currents</subject><subject>Ocean-atmosphere interaction</subject><subject>Oceans</subject><subject>Orographic effects</subject><subject>Orography</subject><subject>Precipitation</subject><subject>Salinity</subject><subject>Seawater</subject><subject>Simulations</subject><subject>Temperature gradients</subject><subject>Transport</subject><subject>Upwelling</subject><subject>Water circulation</subject><subject>Water vapor</subject><subject>Water vapor transport</subject><subject>Water vapour</subject><subject>Westerlies</subject><subject>Wind stress</subject><subject>Zonal winds</subject><issn>0894-8755</issn><issn>1520-0442</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kD1PwzAURS0EEqWwsiFZIMaU9_yVZEIoKqWoqAMwR65ji1TBKXYy8O9J1Aompjfcc8-TLiGXCDPEVN4xQNiapuZ5xmZ4RCYoGSQgBDsmE8hykWSplKfkLMYtADIFMCH3c-es6SJtHX1pe9_p2keqfUWXxtLXD2vHzNNF0250Q9fGak-LOpi-0V3d-nNy4nQT7cXhTsn74_yteEpW68WyeFglRkjWJcJxbqCShktuHWAG3MgNh8rp3KJSQlXW5cpBWqUbrVylGObSGaEUVmgNn5LrvXcX2q_exq7ctn3ww8syS1Egk4NySm7-g1iGgqeDlQ_UbE-Z0MYYrCt3of7U4btEKMcly3HJ52K1HJcscSjcHrQ6Gt24oL2p42-LCcazVIiBu9pz29i14S9XmIPkGf8BGFZ6fw</recordid><startdate>20110601</startdate><enddate>20110601</enddate><creator>Schmittner, Andreas</creator><creator>Silva, Tiago A. M.</creator><creator>Fraedrich, Klaus</creator><creator>Kirk, Edilbert</creator><creator>Lunkeit, Frank</creator><general>American Meteorological Society</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7TG</scope><scope>7UA</scope><scope>7X2</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8AF</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>M0K</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20110601</creationdate><title>Effects of Mountains and Ice Sheets on Global Ocean Circulation</title><author>Schmittner, Andreas ; Silva, Tiago A. M. ; Fraedrich, Klaus ; Kirk, Edilbert ; Lunkeit, Frank</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c452t-4f33c0d5c353ef01803c5b30dfa9e16646def96f07d7ba6fd62195fc4661d1ec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Advection</topic><topic>Air temperature</topic><topic>Antarctic Circumpolar Current</topic><topic>Antarctic ice sheet</topic><topic>Atmosphere</topic><topic>Atmospheric circulation</topic><topic>Atmospheric models</topic><topic>Atmospheric moisture</topic><topic>Cerebral hemispheres</topic><topic>Circulation</topic><topic>Climate change</topic><topic>Climate models</topic><topic>Deep water</topic><topic>Deep water formation</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>Experiments</topic><topic>External geophysics</topic><topic>Fresh water</topic><topic>General circulation models</topic><topic>Glaciation</topic><topic>Height</topic><topic>Ice</topic><topic>Ice sheets</topic><topic>Latitude</topic><topic>Meridional overturning circulation</topic><topic>Meteorology</topic><topic>Moisture effects</topic><topic>Momentum</topic><topic>Momentum transfer</topic><topic>Mountains</topic><topic>Ocean circulation</topic><topic>Ocean circulation patterns</topic><topic>Ocean currents</topic><topic>Ocean-atmosphere interaction</topic><topic>Oceans</topic><topic>Orographic effects</topic><topic>Orography</topic><topic>Precipitation</topic><topic>Salinity</topic><topic>Seawater</topic><topic>Simulations</topic><topic>Temperature gradients</topic><topic>Transport</topic><topic>Upwelling</topic><topic>Water circulation</topic><topic>Water vapor</topic><topic>Water vapor transport</topic><topic>Water vapour</topic><topic>Westerlies</topic><topic>Wind stress</topic><topic>Zonal winds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schmittner, Andreas</creatorcontrib><creatorcontrib>Silva, Tiago A. M.</creatorcontrib><creatorcontrib>Fraedrich, Klaus</creatorcontrib><creatorcontrib>Kirk, Edilbert</creatorcontrib><creatorcontrib>Lunkeit, Frank</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Agricultural Science Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Journal of climate</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schmittner, Andreas</au><au>Silva, Tiago A. M.</au><au>Fraedrich, Klaus</au><au>Kirk, Edilbert</au><au>Lunkeit, Frank</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effects of Mountains and Ice Sheets on Global Ocean Circulation</atitle><jtitle>Journal of climate</jtitle><date>2011-06-01</date><risdate>2011</risdate><volume>24</volume><issue>11</issue><spage>2814</spage><epage>2829</epage><pages>2814-2829</pages><issn>0894-8755</issn><eissn>1520-0442</eissn><abstract>The impact of mountains and ice sheets on the large-scale circulation of the world’s oceans is investigated in a series of simulations with a new coupled ocean–atmosphere model [Oregon State University–University of Victoria model (OSUVic)], in which the height of orography is scaled from 1.5 times the actual height (at T42 resolution) to 0 (no mountains). The results suggest that the effects of mountains and ice sheets on the buoyancy and momentum transfer from the atmosphere to the surface ocean determine the present pattern of deep ocean circulation. Higher mountains reduce water vapor transport from the Pacific and Indian Oceans into the Atlantic Ocean and contribute to increased (decreased) salinities and enhanced (reduced) deep-water formation and meridional overturning circulation in the Atlantic (Pacific). Orographic effects also lead to the observed interhemispheric asymmetry of midlatitude zonal wind stress. The presence of the Antarctic ice sheet cools winter air temperatures by more than 20°C directly above the ice sheet and sets up a polar meridional overturning cell in the atmosphere. The resulting increased meridional temperature gradient strengthens midlatitude westerlies by ∼25% and shifts them poleward by ∼10°. This leads to enhanced and poleward-shifted upwelling of deep waters in the Southern Ocean, a stronger Antarctic Circumpolar Current, increased poleward atmospheric moisture transport, and more advection of high-salinity Indian Ocean water into the South Atlantic. Thus, it is the current configuration of mountains and ice sheets on earth that determines the difference in deep-water formation between the Atlantic and the Pacific.</abstract><cop>Boston, MA</cop><pub>American Meteorological Society</pub><doi>10.1175/2010jcli3982.1</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0894-8755 |
ispartof | Journal of climate, 2011-06, Vol.24 (11), p.2814-2829 |
issn | 0894-8755 1520-0442 |
language | eng |
recordid | cdi_proquest_journals_871412580 |
source | Jstor Complete Legacy; American Meteorological Society; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Advection Air temperature Antarctic Circumpolar Current Antarctic ice sheet Atmosphere Atmospheric circulation Atmospheric models Atmospheric moisture Cerebral hemispheres Circulation Climate change Climate models Deep water Deep water formation Earth, ocean, space Exact sciences and technology Experiments External geophysics Fresh water General circulation models Glaciation Height Ice Ice sheets Latitude Meridional overturning circulation Meteorology Moisture effects Momentum Momentum transfer Mountains Ocean circulation Ocean circulation patterns Ocean currents Ocean-atmosphere interaction Oceans Orographic effects Orography Precipitation Salinity Seawater Simulations Temperature gradients Transport Upwelling Water circulation Water vapor Water vapor transport Water vapour Westerlies Wind stress Zonal winds |
title | Effects of Mountains and Ice Sheets on Global Ocean Circulation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T03%3A44%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effects%20of%20Mountains%20and%20Ice%20Sheets%20on%20Global%20Ocean%20Circulation&rft.jtitle=Journal%20of%20climate&rft.au=Schmittner,%20Andreas&rft.date=2011-06-01&rft.volume=24&rft.issue=11&rft.spage=2814&rft.epage=2829&rft.pages=2814-2829&rft.issn=0894-8755&rft.eissn=1520-0442&rft_id=info:doi/10.1175/2010jcli3982.1&rft_dat=%3Cjstor_proqu%3E26190538%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2814376213&rft_id=info:pmid/&rft_jstor_id=26190538&rfr_iscdi=true |