Decay and Continuity of the Boltzmann Equation in Bounded Domains

Boundaries occur naturally in kinetic equations, and boundary effects are crucial for dynamics of dilute gases governed by the Boltzmann equation. We develop a mathematical theory to study the time decay and continuity of Boltzmann solutions for four basic types of boundary conditions: in-flow, boun...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Archive for rational mechanics and analysis 2010-09, Vol.197 (3), p.713-809
1. Verfasser: Guo, Yan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 809
container_issue 3
container_start_page 713
container_title Archive for rational mechanics and analysis
container_volume 197
creator Guo, Yan
description Boundaries occur naturally in kinetic equations, and boundary effects are crucial for dynamics of dilute gases governed by the Boltzmann equation. We develop a mathematical theory to study the time decay and continuity of Boltzmann solutions for four basic types of boundary conditions: in-flow, bounce-back reflection, specular reflection and diffuse reflection. We establish exponential decay in the L ∞ norm for hard potentials for general classes of smooth domains near an absolute Maxwellian. Moreover, in convex domains, we also establish continuity for these Boltzmann solutions away from the grazing set at the boundary. Our contribution is based on a new L 2 decay theory and its interplay with delicate L ∞ decay analysis for the linearized Boltzmann equation in the presence of many repeated interactions with the boundary.
doi_str_mv 10.1007/s00205-009-0285-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_871336878</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2372515941</sourcerecordid><originalsourceid>FETCH-LOGICAL-c345t-bcba25043b3ba6cb6e1f3be0beced6f5fd6e812d4b9b9303032abe6f18cee1b3</originalsourceid><addsrcrecordid>eNp1kE1PwzAMhiMEEuPjB3CLkDgGnKRN2-PYxoc0icvuUZIm0GlLtqQ9lF9Pq05wQj5Ytl-_th6E7ig8UoDiKQEwyAlARYCVOenP0IxmnBEQBT9HMwDgpMpZcYmuUtqOJeNihuZLa1SPla_xIvi28V3T9jg43H5Z_Bx27fdeeY9Xx061TfC48UO387Wt8TLsVePTDbpwapfs7Slfo83LarN4I-uP1_fFfE0Mz_KWaKMVyyHjmmsljBaWOq4taGtsLVzuamFLyupMV7riMART2gpHS2Mt1fwa3U-2hxiOnU2t3IYu-uGiLAvKuSiLchDRSWRiSClaJw-x2avYSwpy5CQnTnLgJEdOsh92Hk7GKhm1c1F506TfRcYhB8FHbzbp0jDynzb-PfC_-Q89O3iy</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>871336878</pqid></control><display><type>article</type><title>Decay and Continuity of the Boltzmann Equation in Bounded Domains</title><source>Springer Nature - Complete Springer Journals</source><creator>Guo, Yan</creator><creatorcontrib>Guo, Yan</creatorcontrib><description>Boundaries occur naturally in kinetic equations, and boundary effects are crucial for dynamics of dilute gases governed by the Boltzmann equation. We develop a mathematical theory to study the time decay and continuity of Boltzmann solutions for four basic types of boundary conditions: in-flow, bounce-back reflection, specular reflection and diffuse reflection. We establish exponential decay in the L ∞ norm for hard potentials for general classes of smooth domains near an absolute Maxwellian. Moreover, in convex domains, we also establish continuity for these Boltzmann solutions away from the grazing set at the boundary. Our contribution is based on a new L 2 decay theory and its interplay with delicate L ∞ decay analysis for the linearized Boltzmann equation in the presence of many repeated interactions with the boundary.</description><identifier>ISSN: 0003-9527</identifier><identifier>EISSN: 1432-0673</identifier><identifier>DOI: 10.1007/s00205-009-0285-y</identifier><identifier>CODEN: AVRMAW</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Classical Mechanics ; Classical statistical mechanics ; Complex Systems ; Exact sciences and technology ; Fluid- and Aerodynamics ; Kinetic theory ; Mathematical and Computational Physics ; Physics ; Physics and Astronomy ; Statistical physics, thermodynamics, and nonlinear dynamical systems ; Theoretical</subject><ispartof>Archive for rational mechanics and analysis, 2010-09, Vol.197 (3), p.713-809</ispartof><rights>Springer-Verlag 2009</rights><rights>2015 INIST-CNRS</rights><rights>Springer-Verlag 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c345t-bcba25043b3ba6cb6e1f3be0beced6f5fd6e812d4b9b9303032abe6f18cee1b3</citedby><cites>FETCH-LOGICAL-c345t-bcba25043b3ba6cb6e1f3be0beced6f5fd6e812d4b9b9303032abe6f18cee1b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00205-009-0285-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00205-009-0285-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,778,782,27911,27912,41475,42544,51306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23050638$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Guo, Yan</creatorcontrib><title>Decay and Continuity of the Boltzmann Equation in Bounded Domains</title><title>Archive for rational mechanics and analysis</title><addtitle>Arch Rational Mech Anal</addtitle><description>Boundaries occur naturally in kinetic equations, and boundary effects are crucial for dynamics of dilute gases governed by the Boltzmann equation. We develop a mathematical theory to study the time decay and continuity of Boltzmann solutions for four basic types of boundary conditions: in-flow, bounce-back reflection, specular reflection and diffuse reflection. We establish exponential decay in the L ∞ norm for hard potentials for general classes of smooth domains near an absolute Maxwellian. Moreover, in convex domains, we also establish continuity for these Boltzmann solutions away from the grazing set at the boundary. Our contribution is based on a new L 2 decay theory and its interplay with delicate L ∞ decay analysis for the linearized Boltzmann equation in the presence of many repeated interactions with the boundary.</description><subject>Classical Mechanics</subject><subject>Classical statistical mechanics</subject><subject>Complex Systems</subject><subject>Exact sciences and technology</subject><subject>Fluid- and Aerodynamics</subject><subject>Kinetic theory</subject><subject>Mathematical and Computational Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Statistical physics, thermodynamics, and nonlinear dynamical systems</subject><subject>Theoretical</subject><issn>0003-9527</issn><issn>1432-0673</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kE1PwzAMhiMEEuPjB3CLkDgGnKRN2-PYxoc0icvuUZIm0GlLtqQ9lF9Pq05wQj5Ytl-_th6E7ig8UoDiKQEwyAlARYCVOenP0IxmnBEQBT9HMwDgpMpZcYmuUtqOJeNihuZLa1SPla_xIvi28V3T9jg43H5Z_Bx27fdeeY9Xx061TfC48UO387Wt8TLsVePTDbpwapfs7Slfo83LarN4I-uP1_fFfE0Mz_KWaKMVyyHjmmsljBaWOq4taGtsLVzuamFLyupMV7riMART2gpHS2Mt1fwa3U-2hxiOnU2t3IYu-uGiLAvKuSiLchDRSWRiSClaJw-x2avYSwpy5CQnTnLgJEdOsh92Hk7GKhm1c1F506TfRcYhB8FHbzbp0jDynzb-PfC_-Q89O3iy</recordid><startdate>20100901</startdate><enddate>20100901</enddate><creator>Guo, Yan</creator><general>Springer-Verlag</general><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20100901</creationdate><title>Decay and Continuity of the Boltzmann Equation in Bounded Domains</title><author>Guo, Yan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c345t-bcba25043b3ba6cb6e1f3be0beced6f5fd6e812d4b9b9303032abe6f18cee1b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Classical Mechanics</topic><topic>Classical statistical mechanics</topic><topic>Complex Systems</topic><topic>Exact sciences and technology</topic><topic>Fluid- and Aerodynamics</topic><topic>Kinetic theory</topic><topic>Mathematical and Computational Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Statistical physics, thermodynamics, and nonlinear dynamical systems</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Yan</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Archive for rational mechanics and analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Yan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Decay and Continuity of the Boltzmann Equation in Bounded Domains</atitle><jtitle>Archive for rational mechanics and analysis</jtitle><stitle>Arch Rational Mech Anal</stitle><date>2010-09-01</date><risdate>2010</risdate><volume>197</volume><issue>3</issue><spage>713</spage><epage>809</epage><pages>713-809</pages><issn>0003-9527</issn><eissn>1432-0673</eissn><coden>AVRMAW</coden><abstract>Boundaries occur naturally in kinetic equations, and boundary effects are crucial for dynamics of dilute gases governed by the Boltzmann equation. We develop a mathematical theory to study the time decay and continuity of Boltzmann solutions for four basic types of boundary conditions: in-flow, bounce-back reflection, specular reflection and diffuse reflection. We establish exponential decay in the L ∞ norm for hard potentials for general classes of smooth domains near an absolute Maxwellian. Moreover, in convex domains, we also establish continuity for these Boltzmann solutions away from the grazing set at the boundary. Our contribution is based on a new L 2 decay theory and its interplay with delicate L ∞ decay analysis for the linearized Boltzmann equation in the presence of many repeated interactions with the boundary.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1007/s00205-009-0285-y</doi><tpages>97</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0003-9527
ispartof Archive for rational mechanics and analysis, 2010-09, Vol.197 (3), p.713-809
issn 0003-9527
1432-0673
language eng
recordid cdi_proquest_journals_871336878
source Springer Nature - Complete Springer Journals
subjects Classical Mechanics
Classical statistical mechanics
Complex Systems
Exact sciences and technology
Fluid- and Aerodynamics
Kinetic theory
Mathematical and Computational Physics
Physics
Physics and Astronomy
Statistical physics, thermodynamics, and nonlinear dynamical systems
Theoretical
title Decay and Continuity of the Boltzmann Equation in Bounded Domains
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T01%3A04%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Decay%20and%20Continuity%20of%20the%20Boltzmann%20Equation%20in%20Bounded%20Domains&rft.jtitle=Archive%20for%20rational%20mechanics%20and%20analysis&rft.au=Guo,%20Yan&rft.date=2010-09-01&rft.volume=197&rft.issue=3&rft.spage=713&rft.epage=809&rft.pages=713-809&rft.issn=0003-9527&rft.eissn=1432-0673&rft.coden=AVRMAW&rft_id=info:doi/10.1007/s00205-009-0285-y&rft_dat=%3Cproquest_cross%3E2372515941%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=871336878&rft_id=info:pmid/&rfr_iscdi=true