Decay and Continuity of the Boltzmann Equation in Bounded Domains
Boundaries occur naturally in kinetic equations, and boundary effects are crucial for dynamics of dilute gases governed by the Boltzmann equation. We develop a mathematical theory to study the time decay and continuity of Boltzmann solutions for four basic types of boundary conditions: in-flow, boun...
Gespeichert in:
Veröffentlicht in: | Archive for rational mechanics and analysis 2010-09, Vol.197 (3), p.713-809 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 809 |
---|---|
container_issue | 3 |
container_start_page | 713 |
container_title | Archive for rational mechanics and analysis |
container_volume | 197 |
creator | Guo, Yan |
description | Boundaries occur naturally in kinetic equations, and boundary effects are crucial for dynamics of dilute gases governed by the Boltzmann equation. We develop a mathematical theory to study the time decay and continuity of Boltzmann solutions for four basic types of boundary conditions: in-flow, bounce-back reflection, specular reflection and diffuse reflection. We establish exponential decay in the
L
∞
norm for hard potentials for general classes of smooth domains near an absolute Maxwellian. Moreover, in convex domains, we also establish continuity for these Boltzmann solutions away from the grazing set at the boundary. Our contribution is based on a new
L
2
decay theory and its interplay with delicate
L
∞
decay analysis for the linearized Boltzmann equation in the presence of many repeated interactions with the boundary. |
doi_str_mv | 10.1007/s00205-009-0285-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_871336878</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2372515941</sourcerecordid><originalsourceid>FETCH-LOGICAL-c345t-bcba25043b3ba6cb6e1f3be0beced6f5fd6e812d4b9b9303032abe6f18cee1b3</originalsourceid><addsrcrecordid>eNp1kE1PwzAMhiMEEuPjB3CLkDgGnKRN2-PYxoc0icvuUZIm0GlLtqQ9lF9Pq05wQj5Ytl-_th6E7ig8UoDiKQEwyAlARYCVOenP0IxmnBEQBT9HMwDgpMpZcYmuUtqOJeNihuZLa1SPla_xIvi28V3T9jg43H5Z_Bx27fdeeY9Xx061TfC48UO387Wt8TLsVePTDbpwapfs7Slfo83LarN4I-uP1_fFfE0Mz_KWaKMVyyHjmmsljBaWOq4taGtsLVzuamFLyupMV7riMART2gpHS2Mt1fwa3U-2hxiOnU2t3IYu-uGiLAvKuSiLchDRSWRiSClaJw-x2avYSwpy5CQnTnLgJEdOsh92Hk7GKhm1c1F506TfRcYhB8FHbzbp0jDynzb-PfC_-Q89O3iy</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>871336878</pqid></control><display><type>article</type><title>Decay and Continuity of the Boltzmann Equation in Bounded Domains</title><source>Springer Nature - Complete Springer Journals</source><creator>Guo, Yan</creator><creatorcontrib>Guo, Yan</creatorcontrib><description>Boundaries occur naturally in kinetic equations, and boundary effects are crucial for dynamics of dilute gases governed by the Boltzmann equation. We develop a mathematical theory to study the time decay and continuity of Boltzmann solutions for four basic types of boundary conditions: in-flow, bounce-back reflection, specular reflection and diffuse reflection. We establish exponential decay in the
L
∞
norm for hard potentials for general classes of smooth domains near an absolute Maxwellian. Moreover, in convex domains, we also establish continuity for these Boltzmann solutions away from the grazing set at the boundary. Our contribution is based on a new
L
2
decay theory and its interplay with delicate
L
∞
decay analysis for the linearized Boltzmann equation in the presence of many repeated interactions with the boundary.</description><identifier>ISSN: 0003-9527</identifier><identifier>EISSN: 1432-0673</identifier><identifier>DOI: 10.1007/s00205-009-0285-y</identifier><identifier>CODEN: AVRMAW</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Classical Mechanics ; Classical statistical mechanics ; Complex Systems ; Exact sciences and technology ; Fluid- and Aerodynamics ; Kinetic theory ; Mathematical and Computational Physics ; Physics ; Physics and Astronomy ; Statistical physics, thermodynamics, and nonlinear dynamical systems ; Theoretical</subject><ispartof>Archive for rational mechanics and analysis, 2010-09, Vol.197 (3), p.713-809</ispartof><rights>Springer-Verlag 2009</rights><rights>2015 INIST-CNRS</rights><rights>Springer-Verlag 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c345t-bcba25043b3ba6cb6e1f3be0beced6f5fd6e812d4b9b9303032abe6f18cee1b3</citedby><cites>FETCH-LOGICAL-c345t-bcba25043b3ba6cb6e1f3be0beced6f5fd6e812d4b9b9303032abe6f18cee1b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00205-009-0285-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00205-009-0285-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,778,782,27911,27912,41475,42544,51306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23050638$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Guo, Yan</creatorcontrib><title>Decay and Continuity of the Boltzmann Equation in Bounded Domains</title><title>Archive for rational mechanics and analysis</title><addtitle>Arch Rational Mech Anal</addtitle><description>Boundaries occur naturally in kinetic equations, and boundary effects are crucial for dynamics of dilute gases governed by the Boltzmann equation. We develop a mathematical theory to study the time decay and continuity of Boltzmann solutions for four basic types of boundary conditions: in-flow, bounce-back reflection, specular reflection and diffuse reflection. We establish exponential decay in the
L
∞
norm for hard potentials for general classes of smooth domains near an absolute Maxwellian. Moreover, in convex domains, we also establish continuity for these Boltzmann solutions away from the grazing set at the boundary. Our contribution is based on a new
L
2
decay theory and its interplay with delicate
L
∞
decay analysis for the linearized Boltzmann equation in the presence of many repeated interactions with the boundary.</description><subject>Classical Mechanics</subject><subject>Classical statistical mechanics</subject><subject>Complex Systems</subject><subject>Exact sciences and technology</subject><subject>Fluid- and Aerodynamics</subject><subject>Kinetic theory</subject><subject>Mathematical and Computational Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Statistical physics, thermodynamics, and nonlinear dynamical systems</subject><subject>Theoretical</subject><issn>0003-9527</issn><issn>1432-0673</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kE1PwzAMhiMEEuPjB3CLkDgGnKRN2-PYxoc0icvuUZIm0GlLtqQ9lF9Pq05wQj5Ytl-_th6E7ig8UoDiKQEwyAlARYCVOenP0IxmnBEQBT9HMwDgpMpZcYmuUtqOJeNihuZLa1SPla_xIvi28V3T9jg43H5Z_Bx27fdeeY9Xx061TfC48UO387Wt8TLsVePTDbpwapfs7Slfo83LarN4I-uP1_fFfE0Mz_KWaKMVyyHjmmsljBaWOq4taGtsLVzuamFLyupMV7riMART2gpHS2Mt1fwa3U-2hxiOnU2t3IYu-uGiLAvKuSiLchDRSWRiSClaJw-x2avYSwpy5CQnTnLgJEdOsh92Hk7GKhm1c1F506TfRcYhB8FHbzbp0jDynzb-PfC_-Q89O3iy</recordid><startdate>20100901</startdate><enddate>20100901</enddate><creator>Guo, Yan</creator><general>Springer-Verlag</general><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20100901</creationdate><title>Decay and Continuity of the Boltzmann Equation in Bounded Domains</title><author>Guo, Yan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c345t-bcba25043b3ba6cb6e1f3be0beced6f5fd6e812d4b9b9303032abe6f18cee1b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Classical Mechanics</topic><topic>Classical statistical mechanics</topic><topic>Complex Systems</topic><topic>Exact sciences and technology</topic><topic>Fluid- and Aerodynamics</topic><topic>Kinetic theory</topic><topic>Mathematical and Computational Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Statistical physics, thermodynamics, and nonlinear dynamical systems</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Yan</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Archive for rational mechanics and analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Yan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Decay and Continuity of the Boltzmann Equation in Bounded Domains</atitle><jtitle>Archive for rational mechanics and analysis</jtitle><stitle>Arch Rational Mech Anal</stitle><date>2010-09-01</date><risdate>2010</risdate><volume>197</volume><issue>3</issue><spage>713</spage><epage>809</epage><pages>713-809</pages><issn>0003-9527</issn><eissn>1432-0673</eissn><coden>AVRMAW</coden><abstract>Boundaries occur naturally in kinetic equations, and boundary effects are crucial for dynamics of dilute gases governed by the Boltzmann equation. We develop a mathematical theory to study the time decay and continuity of Boltzmann solutions for four basic types of boundary conditions: in-flow, bounce-back reflection, specular reflection and diffuse reflection. We establish exponential decay in the
L
∞
norm for hard potentials for general classes of smooth domains near an absolute Maxwellian. Moreover, in convex domains, we also establish continuity for these Boltzmann solutions away from the grazing set at the boundary. Our contribution is based on a new
L
2
decay theory and its interplay with delicate
L
∞
decay analysis for the linearized Boltzmann equation in the presence of many repeated interactions with the boundary.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1007/s00205-009-0285-y</doi><tpages>97</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-9527 |
ispartof | Archive for rational mechanics and analysis, 2010-09, Vol.197 (3), p.713-809 |
issn | 0003-9527 1432-0673 |
language | eng |
recordid | cdi_proquest_journals_871336878 |
source | Springer Nature - Complete Springer Journals |
subjects | Classical Mechanics Classical statistical mechanics Complex Systems Exact sciences and technology Fluid- and Aerodynamics Kinetic theory Mathematical and Computational Physics Physics Physics and Astronomy Statistical physics, thermodynamics, and nonlinear dynamical systems Theoretical |
title | Decay and Continuity of the Boltzmann Equation in Bounded Domains |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T01%3A04%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Decay%20and%20Continuity%20of%20the%20Boltzmann%20Equation%20in%20Bounded%20Domains&rft.jtitle=Archive%20for%20rational%20mechanics%20and%20analysis&rft.au=Guo,%20Yan&rft.date=2010-09-01&rft.volume=197&rft.issue=3&rft.spage=713&rft.epage=809&rft.pages=713-809&rft.issn=0003-9527&rft.eissn=1432-0673&rft.coden=AVRMAW&rft_id=info:doi/10.1007/s00205-009-0285-y&rft_dat=%3Cproquest_cross%3E2372515941%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=871336878&rft_id=info:pmid/&rfr_iscdi=true |