Asymptotic Stability of the Wave Equation on Compact Manifolds and Locally Distributed Damping: A Sharp Result
Let ( M , g ) be a n -dimensional ( ) compact Riemannian manifold with boundary where g denotes a Riemannian metric of class C ∞ . This paper is concerned with the study of the wave equation on ( M , g ) with locally distributed damping, described by where ∂ M represents the boundary of M and a ( x...
Gespeichert in:
Veröffentlicht in: | Archive for rational mechanics and analysis 2010-09, Vol.197 (3), p.925-964 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 964 |
---|---|
container_issue | 3 |
container_start_page | 925 |
container_title | Archive for rational mechanics and analysis |
container_volume | 197 |
creator | Cavalcanti, M. M. Domingos Cavalcanti, V. N. Fukuoka, R. Soriano, J. A. |
description | Let (
M
,
g
) be a
n
-dimensional (
) compact Riemannian manifold with boundary where
g
denotes a Riemannian metric of class
C
∞
. This paper is concerned with the study of the wave equation on (
M
,
g
) with locally distributed damping, described by
where ∂
M
represents the boundary of
M
and
a
(
x
)
g
(
u
t
) is the damping term. The main goal of the present manuscript is to generalize our previous result in C
avalcanti
et al. (Trans AMS 361(9), 4561–4580, 2009), treating the conjecture in a more general setting and extending the result for
n
-dimensional compact Riemannian manifolds (
M
,
g
) with boundary in two ways: (i) by reducing arbitrarily the region
where the dissipative effect lies (this gives us a totally sharp result with respect to the boundary measure and interior measure where the damping is effective); (ii) by controlling the existence of subsets on the manifold that can be left without any dissipative mechanism, namely,
a precise part of radially symmetric subsets
. An analogous result holds for compact Riemannian manifolds without boundary. |
doi_str_mv | 10.1007/s00205-009-0284-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_871336877</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2372515931</sourcerecordid><originalsourceid>FETCH-LOGICAL-c345t-87657d3c8206618692d277438b7db0367aa40a2e6e344c48b929bba04a9142073</originalsourceid><addsrcrecordid>eNp1kF1L7DAQhoMcwfXjB3gXBC97nHw0ab1bVo8KK4IfeBmmbaqRblOTVFh_vV1W9OrAwDDMM-_MvIQcM_jLAPRZBOCQZwBlBryQ2ecOmTEpeAZKiz9kBgAiK3Ou98h-jG-bkgs1I_08rldD8snV9CFh5TqX1tS3NL1a-owfll6-j5ic7-kUC78asE70FnvX-q6JFPuGLn2NXbemFy6m4Kox2YZe4Gpw_cs5ndOHVwwDvbdx7NIh2W2xi_boOx-Qp3-Xj4vrbHl3dbOYL7NayDxlhVa5bkRdcFCKFarkDddaiqLSTQVCaUQJyK2yQspaFlXJy6pCkFgyyUGLA3Ky1R2Cfx9tTObNj6GfVppCMyFUoTcQ20J18DEG25ohuBWGtWFgNq6aratmctVsXDWf08zptzDG6es2YF-7-DPIBeSgJJs4vuXi1OpfbPg94P_iX4VKhn4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>871336877</pqid></control><display><type>article</type><title>Asymptotic Stability of the Wave Equation on Compact Manifolds and Locally Distributed Damping: A Sharp Result</title><source>SpringerLink Journals</source><creator>Cavalcanti, M. M. ; Domingos Cavalcanti, V. N. ; Fukuoka, R. ; Soriano, J. A.</creator><creatorcontrib>Cavalcanti, M. M. ; Domingos Cavalcanti, V. N. ; Fukuoka, R. ; Soriano, J. A.</creatorcontrib><description>Let (
M
,
g
) be a
n
-dimensional (
) compact Riemannian manifold with boundary where
g
denotes a Riemannian metric of class
C
∞
. This paper is concerned with the study of the wave equation on (
M
,
g
) with locally distributed damping, described by
where ∂
M
represents the boundary of
M
and
a
(
x
)
g
(
u
t
) is the damping term. The main goal of the present manuscript is to generalize our previous result in C
avalcanti
et al. (Trans AMS 361(9), 4561–4580, 2009), treating the conjecture in a more general setting and extending the result for
n
-dimensional compact Riemannian manifolds (
M
,
g
) with boundary in two ways: (i) by reducing arbitrarily the region
where the dissipative effect lies (this gives us a totally sharp result with respect to the boundary measure and interior measure where the damping is effective); (ii) by controlling the existence of subsets on the manifold that can be left without any dissipative mechanism, namely,
a precise part of radially symmetric subsets
. An analogous result holds for compact Riemannian manifolds without boundary.</description><identifier>ISSN: 0003-9527</identifier><identifier>EISSN: 1432-0673</identifier><identifier>DOI: 10.1007/s00205-009-0284-z</identifier><identifier>CODEN: AVRMAW</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Classical and quantum physics: mechanics and fields ; Classical Mechanics ; Classical mechanics of continuous media: general mathematical aspects ; Complex Systems ; Exact sciences and technology ; Fluid- and Aerodynamics ; Mathematical and Computational Physics ; Physics ; Physics and Astronomy ; Theoretical ; Waves and wave propagation: general mathematical aspects</subject><ispartof>Archive for rational mechanics and analysis, 2010-09, Vol.197 (3), p.925-964</ispartof><rights>Springer-Verlag 2009</rights><rights>2015 INIST-CNRS</rights><rights>Springer-Verlag 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c345t-87657d3c8206618692d277438b7db0367aa40a2e6e344c48b929bba04a9142073</citedby><cites>FETCH-LOGICAL-c345t-87657d3c8206618692d277438b7db0367aa40a2e6e344c48b929bba04a9142073</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00205-009-0284-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00205-009-0284-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23050641$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Cavalcanti, M. M.</creatorcontrib><creatorcontrib>Domingos Cavalcanti, V. N.</creatorcontrib><creatorcontrib>Fukuoka, R.</creatorcontrib><creatorcontrib>Soriano, J. A.</creatorcontrib><title>Asymptotic Stability of the Wave Equation on Compact Manifolds and Locally Distributed Damping: A Sharp Result</title><title>Archive for rational mechanics and analysis</title><addtitle>Arch Rational Mech Anal</addtitle><description>Let (
M
,
g
) be a
n
-dimensional (
) compact Riemannian manifold with boundary where
g
denotes a Riemannian metric of class
C
∞
. This paper is concerned with the study of the wave equation on (
M
,
g
) with locally distributed damping, described by
where ∂
M
represents the boundary of
M
and
a
(
x
)
g
(
u
t
) is the damping term. The main goal of the present manuscript is to generalize our previous result in C
avalcanti
et al. (Trans AMS 361(9), 4561–4580, 2009), treating the conjecture in a more general setting and extending the result for
n
-dimensional compact Riemannian manifolds (
M
,
g
) with boundary in two ways: (i) by reducing arbitrarily the region
where the dissipative effect lies (this gives us a totally sharp result with respect to the boundary measure and interior measure where the damping is effective); (ii) by controlling the existence of subsets on the manifold that can be left without any dissipative mechanism, namely,
a precise part of radially symmetric subsets
. An analogous result holds for compact Riemannian manifolds without boundary.</description><subject>Classical and quantum physics: mechanics and fields</subject><subject>Classical Mechanics</subject><subject>Classical mechanics of continuous media: general mathematical aspects</subject><subject>Complex Systems</subject><subject>Exact sciences and technology</subject><subject>Fluid- and Aerodynamics</subject><subject>Mathematical and Computational Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Theoretical</subject><subject>Waves and wave propagation: general mathematical aspects</subject><issn>0003-9527</issn><issn>1432-0673</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kF1L7DAQhoMcwfXjB3gXBC97nHw0ab1bVo8KK4IfeBmmbaqRblOTVFh_vV1W9OrAwDDMM-_MvIQcM_jLAPRZBOCQZwBlBryQ2ecOmTEpeAZKiz9kBgAiK3Ou98h-jG-bkgs1I_08rldD8snV9CFh5TqX1tS3NL1a-owfll6-j5ic7-kUC78asE70FnvX-q6JFPuGLn2NXbemFy6m4Kox2YZe4Gpw_cs5ndOHVwwDvbdx7NIh2W2xi_boOx-Qp3-Xj4vrbHl3dbOYL7NayDxlhVa5bkRdcFCKFarkDddaiqLSTQVCaUQJyK2yQspaFlXJy6pCkFgyyUGLA3Ky1R2Cfx9tTObNj6GfVppCMyFUoTcQ20J18DEG25ohuBWGtWFgNq6aratmctVsXDWf08zptzDG6es2YF-7-DPIBeSgJJs4vuXi1OpfbPg94P_iX4VKhn4</recordid><startdate>20100901</startdate><enddate>20100901</enddate><creator>Cavalcanti, M. M.</creator><creator>Domingos Cavalcanti, V. N.</creator><creator>Fukuoka, R.</creator><creator>Soriano, J. A.</creator><general>Springer-Verlag</general><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20100901</creationdate><title>Asymptotic Stability of the Wave Equation on Compact Manifolds and Locally Distributed Damping: A Sharp Result</title><author>Cavalcanti, M. M. ; Domingos Cavalcanti, V. N. ; Fukuoka, R. ; Soriano, J. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c345t-87657d3c8206618692d277438b7db0367aa40a2e6e344c48b929bba04a9142073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Classical and quantum physics: mechanics and fields</topic><topic>Classical Mechanics</topic><topic>Classical mechanics of continuous media: general mathematical aspects</topic><topic>Complex Systems</topic><topic>Exact sciences and technology</topic><topic>Fluid- and Aerodynamics</topic><topic>Mathematical and Computational Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Theoretical</topic><topic>Waves and wave propagation: general mathematical aspects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cavalcanti, M. M.</creatorcontrib><creatorcontrib>Domingos Cavalcanti, V. N.</creatorcontrib><creatorcontrib>Fukuoka, R.</creatorcontrib><creatorcontrib>Soriano, J. A.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Archive for rational mechanics and analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cavalcanti, M. M.</au><au>Domingos Cavalcanti, V. N.</au><au>Fukuoka, R.</au><au>Soriano, J. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Asymptotic Stability of the Wave Equation on Compact Manifolds and Locally Distributed Damping: A Sharp Result</atitle><jtitle>Archive for rational mechanics and analysis</jtitle><stitle>Arch Rational Mech Anal</stitle><date>2010-09-01</date><risdate>2010</risdate><volume>197</volume><issue>3</issue><spage>925</spage><epage>964</epage><pages>925-964</pages><issn>0003-9527</issn><eissn>1432-0673</eissn><coden>AVRMAW</coden><abstract>Let (
M
,
g
) be a
n
-dimensional (
) compact Riemannian manifold with boundary where
g
denotes a Riemannian metric of class
C
∞
. This paper is concerned with the study of the wave equation on (
M
,
g
) with locally distributed damping, described by
where ∂
M
represents the boundary of
M
and
a
(
x
)
g
(
u
t
) is the damping term. The main goal of the present manuscript is to generalize our previous result in C
avalcanti
et al. (Trans AMS 361(9), 4561–4580, 2009), treating the conjecture in a more general setting and extending the result for
n
-dimensional compact Riemannian manifolds (
M
,
g
) with boundary in two ways: (i) by reducing arbitrarily the region
where the dissipative effect lies (this gives us a totally sharp result with respect to the boundary measure and interior measure where the damping is effective); (ii) by controlling the existence of subsets on the manifold that can be left without any dissipative mechanism, namely,
a precise part of radially symmetric subsets
. An analogous result holds for compact Riemannian manifolds without boundary.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1007/s00205-009-0284-z</doi><tpages>40</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-9527 |
ispartof | Archive for rational mechanics and analysis, 2010-09, Vol.197 (3), p.925-964 |
issn | 0003-9527 1432-0673 |
language | eng |
recordid | cdi_proquest_journals_871336877 |
source | SpringerLink Journals |
subjects | Classical and quantum physics: mechanics and fields Classical Mechanics Classical mechanics of continuous media: general mathematical aspects Complex Systems Exact sciences and technology Fluid- and Aerodynamics Mathematical and Computational Physics Physics Physics and Astronomy Theoretical Waves and wave propagation: general mathematical aspects |
title | Asymptotic Stability of the Wave Equation on Compact Manifolds and Locally Distributed Damping: A Sharp Result |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T04%3A11%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Asymptotic%20Stability%20of%20the%20Wave%20Equation%20on%20Compact%20Manifolds%20and%20Locally%20Distributed%20Damping:%20A%20Sharp%20Result&rft.jtitle=Archive%20for%20rational%20mechanics%20and%20analysis&rft.au=Cavalcanti,%20M.%20M.&rft.date=2010-09-01&rft.volume=197&rft.issue=3&rft.spage=925&rft.epage=964&rft.pages=925-964&rft.issn=0003-9527&rft.eissn=1432-0673&rft.coden=AVRMAW&rft_id=info:doi/10.1007/s00205-009-0284-z&rft_dat=%3Cproquest_cross%3E2372515931%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=871336877&rft_id=info:pmid/&rfr_iscdi=true |