A neural network approach for predicting steel properties characterizing cyclic Ramberg-Osgood equation
ABSTRACT This paper attempts to demonstrate the applicability of artificial neural networks to the estimation of steel properties, cyclic strain‐hardening exponent and cyclic strength coefficient, characterizing cyclic Ramberg–Osgood equation on the basis of monotonic tensile test properties. For th...
Gespeichert in:
Veröffentlicht in: | Fatigue & fracture of engineering materials & structures 2011-07, Vol.34 (7), p.534-544 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 544 |
---|---|
container_issue | 7 |
container_start_page | 534 |
container_title | Fatigue & fracture of engineering materials & structures |
container_volume | 34 |
creator | GHAJAR, R. NASERIFAR, N. SADATI, H. ALIZADEH K., J. |
description | ABSTRACT
This paper attempts to demonstrate the applicability of artificial neural networks to the estimation of steel properties, cyclic strain‐hardening exponent and cyclic strength coefficient, characterizing cyclic Ramberg–Osgood equation on the basis of monotonic tensile test properties. For this purpose, steel tensile data were extracted from the literature and two separate neural networks were constructed. One set of data was used for training the two networks and the remaining for testing purposes. Regression analysis and mean relative error calculation were used to check the accuracy of the system in the training and testing phases. Comparison of the results obtained from the neural networks and the values obtained from direct fitting of experimental data, indicated the reasonable prediction of cyclic strain‐hardening exponent and cyclic strength coefficient, which are often used to characterize the cyclic deformation curve by a Ramberg–Osgood type equation. |
doi_str_mv | 10.1111/j.1460-2695.2010.01545.x |
format | Article |
fullrecord | <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_proquest_journals_870470369</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2368072201</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4255-87a886f3741a98b890b949cc1767af1a3dcb3ace9ae4923d241331c410a25a703</originalsourceid><addsrcrecordid>eNo9kE9P4zAQxS0EEgX2O1gr7THFf-P4sAfE0oJUgQos9GZNXae4hCTYqWj59DgUdS4zmvfe2PohhCkZ0lTnqyEVOclYruWQkbQlVAo53BygwV44RINCyTxTspgdo5MYV4TQXHA-QMsLXLt1gCq17qMJrxjaNjRgX3DZBNwGt_C28_USx865Ki2a1oXOu4jtCwSwnQv-s9ft1lbe4nt4m7uwzO7ismkW2L2vofNNfYaOSqii-_XTT9H_0dXj5XU2uRvfXF5MMiuYlFmhoCjykitBQRfzQpO5FtpaqnIFJQW-sHMO1mlwQjO-YIJyTq2gBJgERfgp-r27mz76vnaxM6tmHer0pCkUEcmR62T682OCaKEqA9TWR9MG_wZha5hgjBNNk-_vzvfhK7fd65SYHr1ZmZ6w6QmbHr35Rm82ZjS66qeUz3Z5n-Bt9nkIryZXXEnzfDs2_2ZP0_HD5NZM-RdvkInq</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>870470369</pqid></control><display><type>article</type><title>A neural network approach for predicting steel properties characterizing cyclic Ramberg-Osgood equation</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>GHAJAR, R. ; NASERIFAR, N. ; SADATI, H. ; ALIZADEH K., J.</creator><creatorcontrib>GHAJAR, R. ; NASERIFAR, N. ; SADATI, H. ; ALIZADEH K., J.</creatorcontrib><description>ABSTRACT
This paper attempts to demonstrate the applicability of artificial neural networks to the estimation of steel properties, cyclic strain‐hardening exponent and cyclic strength coefficient, characterizing cyclic Ramberg–Osgood equation on the basis of monotonic tensile test properties. For this purpose, steel tensile data were extracted from the literature and two separate neural networks were constructed. One set of data was used for training the two networks and the remaining for testing purposes. Regression analysis and mean relative error calculation were used to check the accuracy of the system in the training and testing phases. Comparison of the results obtained from the neural networks and the values obtained from direct fitting of experimental data, indicated the reasonable prediction of cyclic strain‐hardening exponent and cyclic strength coefficient, which are often used to characterize the cyclic deformation curve by a Ramberg–Osgood type equation.</description><identifier>ISSN: 8756-758X</identifier><identifier>EISSN: 1460-2695</identifier><identifier>DOI: 10.1111/j.1460-2695.2010.01545.x</identifier><identifier>CODEN: FFESEY</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>ANN ; Applied sciences ; cyclic strain hardening ; Deformation ; Exact sciences and technology ; Fatigue ; fatigue properties ; Materials fatigue ; Mechanical properties ; Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology ; Metals. Metallurgy ; Neural networks ; Ramberg-Osgood ; Steel ; Tensile strength</subject><ispartof>Fatigue & fracture of engineering materials & structures, 2011-07, Vol.34 (7), p.534-544</ispartof><rights>2011 Blackwell Publishing Ltd.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4255-87a886f3741a98b890b949cc1767af1a3dcb3ace9ae4923d241331c410a25a703</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,1411,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24223091$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>GHAJAR, R.</creatorcontrib><creatorcontrib>NASERIFAR, N.</creatorcontrib><creatorcontrib>SADATI, H.</creatorcontrib><creatorcontrib>ALIZADEH K., J.</creatorcontrib><title>A neural network approach for predicting steel properties characterizing cyclic Ramberg-Osgood equation</title><title>Fatigue & fracture of engineering materials & structures</title><description>ABSTRACT
This paper attempts to demonstrate the applicability of artificial neural networks to the estimation of steel properties, cyclic strain‐hardening exponent and cyclic strength coefficient, characterizing cyclic Ramberg–Osgood equation on the basis of monotonic tensile test properties. For this purpose, steel tensile data were extracted from the literature and two separate neural networks were constructed. One set of data was used for training the two networks and the remaining for testing purposes. Regression analysis and mean relative error calculation were used to check the accuracy of the system in the training and testing phases. Comparison of the results obtained from the neural networks and the values obtained from direct fitting of experimental data, indicated the reasonable prediction of cyclic strain‐hardening exponent and cyclic strength coefficient, which are often used to characterize the cyclic deformation curve by a Ramberg–Osgood type equation.</description><subject>ANN</subject><subject>Applied sciences</subject><subject>cyclic strain hardening</subject><subject>Deformation</subject><subject>Exact sciences and technology</subject><subject>Fatigue</subject><subject>fatigue properties</subject><subject>Materials fatigue</subject><subject>Mechanical properties</subject><subject>Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology</subject><subject>Metals. Metallurgy</subject><subject>Neural networks</subject><subject>Ramberg-Osgood</subject><subject>Steel</subject><subject>Tensile strength</subject><issn>8756-758X</issn><issn>1460-2695</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNo9kE9P4zAQxS0EEgX2O1gr7THFf-P4sAfE0oJUgQos9GZNXae4hCTYqWj59DgUdS4zmvfe2PohhCkZ0lTnqyEVOclYruWQkbQlVAo53BygwV44RINCyTxTspgdo5MYV4TQXHA-QMsLXLt1gCq17qMJrxjaNjRgX3DZBNwGt_C28_USx865Ki2a1oXOu4jtCwSwnQv-s9ft1lbe4nt4m7uwzO7ismkW2L2vofNNfYaOSqii-_XTT9H_0dXj5XU2uRvfXF5MMiuYlFmhoCjykitBQRfzQpO5FtpaqnIFJQW-sHMO1mlwQjO-YIJyTq2gBJgERfgp-r27mz76vnaxM6tmHer0pCkUEcmR62T682OCaKEqA9TWR9MG_wZha5hgjBNNk-_vzvfhK7fd65SYHr1ZmZ6w6QmbHr35Rm82ZjS66qeUz3Z5n-Bt9nkIryZXXEnzfDs2_2ZP0_HD5NZM-RdvkInq</recordid><startdate>201107</startdate><enddate>201107</enddate><creator>GHAJAR, R.</creator><creator>NASERIFAR, N.</creator><creator>SADATI, H.</creator><creator>ALIZADEH K., J.</creator><general>Blackwell Publishing Ltd</general><general>Blackwell</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>IQODW</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope></search><sort><creationdate>201107</creationdate><title>A neural network approach for predicting steel properties characterizing cyclic Ramberg-Osgood equation</title><author>GHAJAR, R. ; NASERIFAR, N. ; SADATI, H. ; ALIZADEH K., J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4255-87a886f3741a98b890b949cc1767af1a3dcb3ace9ae4923d241331c410a25a703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>ANN</topic><topic>Applied sciences</topic><topic>cyclic strain hardening</topic><topic>Deformation</topic><topic>Exact sciences and technology</topic><topic>Fatigue</topic><topic>fatigue properties</topic><topic>Materials fatigue</topic><topic>Mechanical properties</topic><topic>Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology</topic><topic>Metals. Metallurgy</topic><topic>Neural networks</topic><topic>Ramberg-Osgood</topic><topic>Steel</topic><topic>Tensile strength</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>GHAJAR, R.</creatorcontrib><creatorcontrib>NASERIFAR, N.</creatorcontrib><creatorcontrib>SADATI, H.</creatorcontrib><creatorcontrib>ALIZADEH K., J.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Fatigue & fracture of engineering materials & structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>GHAJAR, R.</au><au>NASERIFAR, N.</au><au>SADATI, H.</au><au>ALIZADEH K., J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A neural network approach for predicting steel properties characterizing cyclic Ramberg-Osgood equation</atitle><jtitle>Fatigue & fracture of engineering materials & structures</jtitle><date>2011-07</date><risdate>2011</risdate><volume>34</volume><issue>7</issue><spage>534</spage><epage>544</epage><pages>534-544</pages><issn>8756-758X</issn><eissn>1460-2695</eissn><coden>FFESEY</coden><abstract>ABSTRACT
This paper attempts to demonstrate the applicability of artificial neural networks to the estimation of steel properties, cyclic strain‐hardening exponent and cyclic strength coefficient, characterizing cyclic Ramberg–Osgood equation on the basis of monotonic tensile test properties. For this purpose, steel tensile data were extracted from the literature and two separate neural networks were constructed. One set of data was used for training the two networks and the remaining for testing purposes. Regression analysis and mean relative error calculation were used to check the accuracy of the system in the training and testing phases. Comparison of the results obtained from the neural networks and the values obtained from direct fitting of experimental data, indicated the reasonable prediction of cyclic strain‐hardening exponent and cyclic strength coefficient, which are often used to characterize the cyclic deformation curve by a Ramberg–Osgood type equation.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/j.1460-2695.2010.01545.x</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 8756-758X |
ispartof | Fatigue & fracture of engineering materials & structures, 2011-07, Vol.34 (7), p.534-544 |
issn | 8756-758X 1460-2695 |
language | eng |
recordid | cdi_proquest_journals_870470369 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | ANN Applied sciences cyclic strain hardening Deformation Exact sciences and technology Fatigue fatigue properties Materials fatigue Mechanical properties Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology Metals. Metallurgy Neural networks Ramberg-Osgood Steel Tensile strength |
title | A neural network approach for predicting steel properties characterizing cyclic Ramberg-Osgood equation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T00%3A08%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20neural%20network%20approach%20for%20predicting%20steel%20properties%20characterizing%20cyclic%20Ramberg-Osgood%20equation&rft.jtitle=Fatigue%20&%20fracture%20of%20engineering%20materials%20&%20structures&rft.au=GHAJAR,%20R.&rft.date=2011-07&rft.volume=34&rft.issue=7&rft.spage=534&rft.epage=544&rft.pages=534-544&rft.issn=8756-758X&rft.eissn=1460-2695&rft.coden=FFESEY&rft_id=info:doi/10.1111/j.1460-2695.2010.01545.x&rft_dat=%3Cproquest_pasca%3E2368072201%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=870470369&rft_id=info:pmid/&rfr_iscdi=true |