A neural network approach for predicting steel properties characterizing cyclic Ramberg-Osgood equation

ABSTRACT This paper attempts to demonstrate the applicability of artificial neural networks to the estimation of steel properties, cyclic strain‐hardening exponent and cyclic strength coefficient, characterizing cyclic Ramberg–Osgood equation on the basis of monotonic tensile test properties. For th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Fatigue & fracture of engineering materials & structures 2011-07, Vol.34 (7), p.534-544
Hauptverfasser: GHAJAR, R., NASERIFAR, N., SADATI, H., ALIZADEH K., J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 544
container_issue 7
container_start_page 534
container_title Fatigue & fracture of engineering materials & structures
container_volume 34
creator GHAJAR, R.
NASERIFAR, N.
SADATI, H.
ALIZADEH K., J.
description ABSTRACT This paper attempts to demonstrate the applicability of artificial neural networks to the estimation of steel properties, cyclic strain‐hardening exponent and cyclic strength coefficient, characterizing cyclic Ramberg–Osgood equation on the basis of monotonic tensile test properties. For this purpose, steel tensile data were extracted from the literature and two separate neural networks were constructed. One set of data was used for training the two networks and the remaining for testing purposes. Regression analysis and mean relative error calculation were used to check the accuracy of the system in the training and testing phases. Comparison of the results obtained from the neural networks and the values obtained from direct fitting of experimental data, indicated the reasonable prediction of cyclic strain‐hardening exponent and cyclic strength coefficient, which are often used to characterize the cyclic deformation curve by a Ramberg–Osgood type equation.
doi_str_mv 10.1111/j.1460-2695.2010.01545.x
format Article
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_proquest_journals_870470369</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2368072201</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4255-87a886f3741a98b890b949cc1767af1a3dcb3ace9ae4923d241331c410a25a703</originalsourceid><addsrcrecordid>eNo9kE9P4zAQxS0EEgX2O1gr7THFf-P4sAfE0oJUgQos9GZNXae4hCTYqWj59DgUdS4zmvfe2PohhCkZ0lTnqyEVOclYruWQkbQlVAo53BygwV44RINCyTxTspgdo5MYV4TQXHA-QMsLXLt1gCq17qMJrxjaNjRgX3DZBNwGt_C28_USx865Ki2a1oXOu4jtCwSwnQv-s9ft1lbe4nt4m7uwzO7ismkW2L2vofNNfYaOSqii-_XTT9H_0dXj5XU2uRvfXF5MMiuYlFmhoCjykitBQRfzQpO5FtpaqnIFJQW-sHMO1mlwQjO-YIJyTq2gBJgERfgp-r27mz76vnaxM6tmHer0pCkUEcmR62T682OCaKEqA9TWR9MG_wZha5hgjBNNk-_vzvfhK7fd65SYHr1ZmZ6w6QmbHr35Rm82ZjS66qeUz3Z5n-Bt9nkIryZXXEnzfDs2_2ZP0_HD5NZM-RdvkInq</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>870470369</pqid></control><display><type>article</type><title>A neural network approach for predicting steel properties characterizing cyclic Ramberg-Osgood equation</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>GHAJAR, R. ; NASERIFAR, N. ; SADATI, H. ; ALIZADEH K., J.</creator><creatorcontrib>GHAJAR, R. ; NASERIFAR, N. ; SADATI, H. ; ALIZADEH K., J.</creatorcontrib><description>ABSTRACT This paper attempts to demonstrate the applicability of artificial neural networks to the estimation of steel properties, cyclic strain‐hardening exponent and cyclic strength coefficient, characterizing cyclic Ramberg–Osgood equation on the basis of monotonic tensile test properties. For this purpose, steel tensile data were extracted from the literature and two separate neural networks were constructed. One set of data was used for training the two networks and the remaining for testing purposes. Regression analysis and mean relative error calculation were used to check the accuracy of the system in the training and testing phases. Comparison of the results obtained from the neural networks and the values obtained from direct fitting of experimental data, indicated the reasonable prediction of cyclic strain‐hardening exponent and cyclic strength coefficient, which are often used to characterize the cyclic deformation curve by a Ramberg–Osgood type equation.</description><identifier>ISSN: 8756-758X</identifier><identifier>EISSN: 1460-2695</identifier><identifier>DOI: 10.1111/j.1460-2695.2010.01545.x</identifier><identifier>CODEN: FFESEY</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>ANN ; Applied sciences ; cyclic strain hardening ; Deformation ; Exact sciences and technology ; Fatigue ; fatigue properties ; Materials fatigue ; Mechanical properties ; Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology ; Metals. Metallurgy ; Neural networks ; Ramberg-Osgood ; Steel ; Tensile strength</subject><ispartof>Fatigue &amp; fracture of engineering materials &amp; structures, 2011-07, Vol.34 (7), p.534-544</ispartof><rights>2011 Blackwell Publishing Ltd.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4255-87a886f3741a98b890b949cc1767af1a3dcb3ace9ae4923d241331c410a25a703</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,1411,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24223091$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>GHAJAR, R.</creatorcontrib><creatorcontrib>NASERIFAR, N.</creatorcontrib><creatorcontrib>SADATI, H.</creatorcontrib><creatorcontrib>ALIZADEH K., J.</creatorcontrib><title>A neural network approach for predicting steel properties characterizing cyclic Ramberg-Osgood equation</title><title>Fatigue &amp; fracture of engineering materials &amp; structures</title><description>ABSTRACT This paper attempts to demonstrate the applicability of artificial neural networks to the estimation of steel properties, cyclic strain‐hardening exponent and cyclic strength coefficient, characterizing cyclic Ramberg–Osgood equation on the basis of monotonic tensile test properties. For this purpose, steel tensile data were extracted from the literature and two separate neural networks were constructed. One set of data was used for training the two networks and the remaining for testing purposes. Regression analysis and mean relative error calculation were used to check the accuracy of the system in the training and testing phases. Comparison of the results obtained from the neural networks and the values obtained from direct fitting of experimental data, indicated the reasonable prediction of cyclic strain‐hardening exponent and cyclic strength coefficient, which are often used to characterize the cyclic deformation curve by a Ramberg–Osgood type equation.</description><subject>ANN</subject><subject>Applied sciences</subject><subject>cyclic strain hardening</subject><subject>Deformation</subject><subject>Exact sciences and technology</subject><subject>Fatigue</subject><subject>fatigue properties</subject><subject>Materials fatigue</subject><subject>Mechanical properties</subject><subject>Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology</subject><subject>Metals. Metallurgy</subject><subject>Neural networks</subject><subject>Ramberg-Osgood</subject><subject>Steel</subject><subject>Tensile strength</subject><issn>8756-758X</issn><issn>1460-2695</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNo9kE9P4zAQxS0EEgX2O1gr7THFf-P4sAfE0oJUgQos9GZNXae4hCTYqWj59DgUdS4zmvfe2PohhCkZ0lTnqyEVOclYruWQkbQlVAo53BygwV44RINCyTxTspgdo5MYV4TQXHA-QMsLXLt1gCq17qMJrxjaNjRgX3DZBNwGt_C28_USx865Ki2a1oXOu4jtCwSwnQv-s9ft1lbe4nt4m7uwzO7ismkW2L2vofNNfYaOSqii-_XTT9H_0dXj5XU2uRvfXF5MMiuYlFmhoCjykitBQRfzQpO5FtpaqnIFJQW-sHMO1mlwQjO-YIJyTq2gBJgERfgp-r27mz76vnaxM6tmHer0pCkUEcmR62T682OCaKEqA9TWR9MG_wZha5hgjBNNk-_vzvfhK7fd65SYHr1ZmZ6w6QmbHr35Rm82ZjS66qeUz3Z5n-Bt9nkIryZXXEnzfDs2_2ZP0_HD5NZM-RdvkInq</recordid><startdate>201107</startdate><enddate>201107</enddate><creator>GHAJAR, R.</creator><creator>NASERIFAR, N.</creator><creator>SADATI, H.</creator><creator>ALIZADEH K., J.</creator><general>Blackwell Publishing Ltd</general><general>Blackwell</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>IQODW</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope></search><sort><creationdate>201107</creationdate><title>A neural network approach for predicting steel properties characterizing cyclic Ramberg-Osgood equation</title><author>GHAJAR, R. ; NASERIFAR, N. ; SADATI, H. ; ALIZADEH K., J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4255-87a886f3741a98b890b949cc1767af1a3dcb3ace9ae4923d241331c410a25a703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>ANN</topic><topic>Applied sciences</topic><topic>cyclic strain hardening</topic><topic>Deformation</topic><topic>Exact sciences and technology</topic><topic>Fatigue</topic><topic>fatigue properties</topic><topic>Materials fatigue</topic><topic>Mechanical properties</topic><topic>Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology</topic><topic>Metals. Metallurgy</topic><topic>Neural networks</topic><topic>Ramberg-Osgood</topic><topic>Steel</topic><topic>Tensile strength</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>GHAJAR, R.</creatorcontrib><creatorcontrib>NASERIFAR, N.</creatorcontrib><creatorcontrib>SADATI, H.</creatorcontrib><creatorcontrib>ALIZADEH K., J.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Fatigue &amp; fracture of engineering materials &amp; structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>GHAJAR, R.</au><au>NASERIFAR, N.</au><au>SADATI, H.</au><au>ALIZADEH K., J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A neural network approach for predicting steel properties characterizing cyclic Ramberg-Osgood equation</atitle><jtitle>Fatigue &amp; fracture of engineering materials &amp; structures</jtitle><date>2011-07</date><risdate>2011</risdate><volume>34</volume><issue>7</issue><spage>534</spage><epage>544</epage><pages>534-544</pages><issn>8756-758X</issn><eissn>1460-2695</eissn><coden>FFESEY</coden><abstract>ABSTRACT This paper attempts to demonstrate the applicability of artificial neural networks to the estimation of steel properties, cyclic strain‐hardening exponent and cyclic strength coefficient, characterizing cyclic Ramberg–Osgood equation on the basis of monotonic tensile test properties. For this purpose, steel tensile data were extracted from the literature and two separate neural networks were constructed. One set of data was used for training the two networks and the remaining for testing purposes. Regression analysis and mean relative error calculation were used to check the accuracy of the system in the training and testing phases. Comparison of the results obtained from the neural networks and the values obtained from direct fitting of experimental data, indicated the reasonable prediction of cyclic strain‐hardening exponent and cyclic strength coefficient, which are often used to characterize the cyclic deformation curve by a Ramberg–Osgood type equation.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/j.1460-2695.2010.01545.x</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 8756-758X
ispartof Fatigue & fracture of engineering materials & structures, 2011-07, Vol.34 (7), p.534-544
issn 8756-758X
1460-2695
language eng
recordid cdi_proquest_journals_870470369
source Wiley Online Library Journals Frontfile Complete
subjects ANN
Applied sciences
cyclic strain hardening
Deformation
Exact sciences and technology
Fatigue
fatigue properties
Materials fatigue
Mechanical properties
Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology
Metals. Metallurgy
Neural networks
Ramberg-Osgood
Steel
Tensile strength
title A neural network approach for predicting steel properties characterizing cyclic Ramberg-Osgood equation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T00%3A08%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20neural%20network%20approach%20for%20predicting%20steel%20properties%20characterizing%20cyclic%20Ramberg-Osgood%20equation&rft.jtitle=Fatigue%20&%20fracture%20of%20engineering%20materials%20&%20structures&rft.au=GHAJAR,%20R.&rft.date=2011-07&rft.volume=34&rft.issue=7&rft.spage=534&rft.epage=544&rft.pages=534-544&rft.issn=8756-758X&rft.eissn=1460-2695&rft.coden=FFESEY&rft_id=info:doi/10.1111/j.1460-2695.2010.01545.x&rft_dat=%3Cproquest_pasca%3E2368072201%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=870470369&rft_id=info:pmid/&rfr_iscdi=true