Vehicle Detection and Tracking in Car Video Based on Motion Model
This paper aims at real-time in-car video analysis to detect and track vehicles ahead for safety, autodriving, and target tracing. This paper describes a comprehensive approach to localizing target vehicles in video under various environmental conditions. The extracted geometry features from the vid...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on intelligent transportation systems 2011-06, Vol.12 (2), p.583-595 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 595 |
---|---|
container_issue | 2 |
container_start_page | 583 |
container_title | IEEE transactions on intelligent transportation systems |
container_volume | 12 |
creator | Jazayeri, A Hongyuan Cai Jiang Yu Zheng Tuceryan, Mihran |
description | This paper aims at real-time in-car video analysis to detect and track vehicles ahead for safety, autodriving, and target tracing. This paper describes a comprehensive approach to localizing target vehicles in video under various environmental conditions. The extracted geometry features from the video are continuously projected onto a 1-D profile and are constantly tracked. We rely on temporal information of features and their motion behaviors for vehicle identification, which compensates for the complexity in recognizing vehicle shapes, colors, and types. We probabilistically model the motion in the field of view according to the scene characteristic and the vehicle motion model. The hidden Markov model (HMM) is used to separate target vehicles from the background and track them probabilistically. We have investigated videos of day and night on different types of roads, showing that our approach is robust and effective in dealing with changes in environment and illumination and that real-time processing becomes possible for vehicle-borne cameras. |
doi_str_mv | 10.1109/TITS.2011.2113340 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_869553420</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5723749</ieee_id><sourcerecordid>2363605381</sourcerecordid><originalsourceid>FETCH-LOGICAL-c420t-b86c50208349cef58df921cb05b4302c2e1823b3a126170058038d975597fe133</originalsourceid><addsrcrecordid>eNpdkE1PwzAMhisEEmPwAxCXCglx6rDzsSZHGJ_SJg6MXaMsdSGjtJBsB_49GZt24GTLfl7r9ZtlpwgDRNBX06fpy4AB4oAhci5gL-uhlKoAwOH-umei0CDhMDuKcZGmQiL2susZvXvXUH5LS3JL37W5bat8Gqz78O1b7tt8ZEM-8xV1-Y2NVOUJmXR_5KSrqDnODmrbRDrZ1n72en83HT0W4-eHp9H1uHCCwbKYq6GTwEBxoR3VUlW1ZujmIOeCA3OMUDE-5xbZEEsAqYCrSpdS6rKm9FI_u9zc_Qrd94ri0nz66KhpbEvdKhqltBCJZok8_0cuulVokzmjhlpKngwlCDeQC12MgWrzFfynDT8GwawjNetIzTpSs400aS62h210tqmDbZ2POyETjCvxZ_Vsw3ki2q1lyXgpNP8FZW97NA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>869553420</pqid></control><display><type>article</type><title>Vehicle Detection and Tracking in Car Video Based on Motion Model</title><source>IEEE Electronic Library (IEL)</source><creator>Jazayeri, A ; Hongyuan Cai ; Jiang Yu Zheng ; Tuceryan, Mihran</creator><creatorcontrib>Jazayeri, A ; Hongyuan Cai ; Jiang Yu Zheng ; Tuceryan, Mihran</creatorcontrib><description>This paper aims at real-time in-car video analysis to detect and track vehicles ahead for safety, autodriving, and target tracing. This paper describes a comprehensive approach to localizing target vehicles in video under various environmental conditions. The extracted geometry features from the video are continuously projected onto a 1-D profile and are constantly tracked. We rely on temporal information of features and their motion behaviors for vehicle identification, which compensates for the complexity in recognizing vehicle shapes, colors, and types. We probabilistically model the motion in the field of view according to the scene characteristic and the vehicle motion model. The hidden Markov model (HMM) is used to separate target vehicles from the background and track them probabilistically. We have investigated videos of day and night on different types of roads, showing that our approach is robust and effective in dealing with changes in environment and illumination and that real-time processing becomes possible for vehicle-borne cameras.</description><identifier>ISSN: 1524-9050</identifier><identifier>EISSN: 1558-0016</identifier><identifier>DOI: 10.1109/TITS.2011.2113340</identifier><identifier>CODEN: ITISFG</identifier><language>eng</language><publisher>Piscataway, NJ: IEEE</publisher><subject>1-D profiling ; Applied sciences ; Artificial intelligence ; Automobiles ; Automotive engineering ; Cameras ; Computer science; control theory; systems ; Dealing ; Dynamic target identification ; Exact sciences and technology ; feature detection ; Feature extraction ; hidden Markov model (HMM) ; Hidden Markov models ; Illumination ; in-car video ; Mathematical models ; Pattern recognition. Digital image processing. Computational geometry ; probability ; Real time ; Recognition ; Roads ; Target tracking ; Tracking ; vehicle motion ; Vehicles</subject><ispartof>IEEE transactions on intelligent transportation systems, 2011-06, Vol.12 (2), p.583-595</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jun 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c420t-b86c50208349cef58df921cb05b4302c2e1823b3a126170058038d975597fe133</citedby><cites>FETCH-LOGICAL-c420t-b86c50208349cef58df921cb05b4302c2e1823b3a126170058038d975597fe133</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5723749$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5723749$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24238413$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Jazayeri, A</creatorcontrib><creatorcontrib>Hongyuan Cai</creatorcontrib><creatorcontrib>Jiang Yu Zheng</creatorcontrib><creatorcontrib>Tuceryan, Mihran</creatorcontrib><title>Vehicle Detection and Tracking in Car Video Based on Motion Model</title><title>IEEE transactions on intelligent transportation systems</title><addtitle>TITS</addtitle><description>This paper aims at real-time in-car video analysis to detect and track vehicles ahead for safety, autodriving, and target tracing. This paper describes a comprehensive approach to localizing target vehicles in video under various environmental conditions. The extracted geometry features from the video are continuously projected onto a 1-D profile and are constantly tracked. We rely on temporal information of features and their motion behaviors for vehicle identification, which compensates for the complexity in recognizing vehicle shapes, colors, and types. We probabilistically model the motion in the field of view according to the scene characteristic and the vehicle motion model. The hidden Markov model (HMM) is used to separate target vehicles from the background and track them probabilistically. We have investigated videos of day and night on different types of roads, showing that our approach is robust and effective in dealing with changes in environment and illumination and that real-time processing becomes possible for vehicle-borne cameras.</description><subject>1-D profiling</subject><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Automobiles</subject><subject>Automotive engineering</subject><subject>Cameras</subject><subject>Computer science; control theory; systems</subject><subject>Dealing</subject><subject>Dynamic target identification</subject><subject>Exact sciences and technology</subject><subject>feature detection</subject><subject>Feature extraction</subject><subject>hidden Markov model (HMM)</subject><subject>Hidden Markov models</subject><subject>Illumination</subject><subject>in-car video</subject><subject>Mathematical models</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><subject>probability</subject><subject>Real time</subject><subject>Recognition</subject><subject>Roads</subject><subject>Target tracking</subject><subject>Tracking</subject><subject>vehicle motion</subject><subject>Vehicles</subject><issn>1524-9050</issn><issn>1558-0016</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE1PwzAMhisEEmPwAxCXCglx6rDzsSZHGJ_SJg6MXaMsdSGjtJBsB_49GZt24GTLfl7r9ZtlpwgDRNBX06fpy4AB4oAhci5gL-uhlKoAwOH-umei0CDhMDuKcZGmQiL2susZvXvXUH5LS3JL37W5bat8Gqz78O1b7tt8ZEM-8xV1-Y2NVOUJmXR_5KSrqDnODmrbRDrZ1n72en83HT0W4-eHp9H1uHCCwbKYq6GTwEBxoR3VUlW1ZujmIOeCA3OMUDE-5xbZEEsAqYCrSpdS6rKm9FI_u9zc_Qrd94ri0nz66KhpbEvdKhqltBCJZok8_0cuulVokzmjhlpKngwlCDeQC12MgWrzFfynDT8GwawjNetIzTpSs400aS62h210tqmDbZ2POyETjCvxZ_Vsw3ki2q1lyXgpNP8FZW97NA</recordid><startdate>20110601</startdate><enddate>20110601</enddate><creator>Jazayeri, A</creator><creator>Hongyuan Cai</creator><creator>Jiang Yu Zheng</creator><creator>Tuceryan, Mihran</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope></search><sort><creationdate>20110601</creationdate><title>Vehicle Detection and Tracking in Car Video Based on Motion Model</title><author>Jazayeri, A ; Hongyuan Cai ; Jiang Yu Zheng ; Tuceryan, Mihran</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c420t-b86c50208349cef58df921cb05b4302c2e1823b3a126170058038d975597fe133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>1-D profiling</topic><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Automobiles</topic><topic>Automotive engineering</topic><topic>Cameras</topic><topic>Computer science; control theory; systems</topic><topic>Dealing</topic><topic>Dynamic target identification</topic><topic>Exact sciences and technology</topic><topic>feature detection</topic><topic>Feature extraction</topic><topic>hidden Markov model (HMM)</topic><topic>Hidden Markov models</topic><topic>Illumination</topic><topic>in-car video</topic><topic>Mathematical models</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><topic>probability</topic><topic>Real time</topic><topic>Recognition</topic><topic>Roads</topic><topic>Target tracking</topic><topic>Tracking</topic><topic>vehicle motion</topic><topic>Vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jazayeri, A</creatorcontrib><creatorcontrib>Hongyuan Cai</creatorcontrib><creatorcontrib>Jiang Yu Zheng</creatorcontrib><creatorcontrib>Tuceryan, Mihran</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><jtitle>IEEE transactions on intelligent transportation systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jazayeri, A</au><au>Hongyuan Cai</au><au>Jiang Yu Zheng</au><au>Tuceryan, Mihran</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Vehicle Detection and Tracking in Car Video Based on Motion Model</atitle><jtitle>IEEE transactions on intelligent transportation systems</jtitle><stitle>TITS</stitle><date>2011-06-01</date><risdate>2011</risdate><volume>12</volume><issue>2</issue><spage>583</spage><epage>595</epage><pages>583-595</pages><issn>1524-9050</issn><eissn>1558-0016</eissn><coden>ITISFG</coden><abstract>This paper aims at real-time in-car video analysis to detect and track vehicles ahead for safety, autodriving, and target tracing. This paper describes a comprehensive approach to localizing target vehicles in video under various environmental conditions. The extracted geometry features from the video are continuously projected onto a 1-D profile and are constantly tracked. We rely on temporal information of features and their motion behaviors for vehicle identification, which compensates for the complexity in recognizing vehicle shapes, colors, and types. We probabilistically model the motion in the field of view according to the scene characteristic and the vehicle motion model. The hidden Markov model (HMM) is used to separate target vehicles from the background and track them probabilistically. We have investigated videos of day and night on different types of roads, showing that our approach is robust and effective in dealing with changes in environment and illumination and that real-time processing becomes possible for vehicle-borne cameras.</abstract><cop>Piscataway, NJ</cop><pub>IEEE</pub><doi>10.1109/TITS.2011.2113340</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1524-9050 |
ispartof | IEEE transactions on intelligent transportation systems, 2011-06, Vol.12 (2), p.583-595 |
issn | 1524-9050 1558-0016 |
language | eng |
recordid | cdi_proquest_journals_869553420 |
source | IEEE Electronic Library (IEL) |
subjects | 1-D profiling Applied sciences Artificial intelligence Automobiles Automotive engineering Cameras Computer science control theory systems Dealing Dynamic target identification Exact sciences and technology feature detection Feature extraction hidden Markov model (HMM) Hidden Markov models Illumination in-car video Mathematical models Pattern recognition. Digital image processing. Computational geometry probability Real time Recognition Roads Target tracking Tracking vehicle motion Vehicles |
title | Vehicle Detection and Tracking in Car Video Based on Motion Model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T23%3A41%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Vehicle%20Detection%20and%20Tracking%20in%20Car%20Video%20Based%20on%20Motion%20Model&rft.jtitle=IEEE%20transactions%20on%20intelligent%20transportation%20systems&rft.au=Jazayeri,%20A&rft.date=2011-06-01&rft.volume=12&rft.issue=2&rft.spage=583&rft.epage=595&rft.pages=583-595&rft.issn=1524-9050&rft.eissn=1558-0016&rft.coden=ITISFG&rft_id=info:doi/10.1109/TITS.2011.2113340&rft_dat=%3Cproquest_RIE%3E2363605381%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=869553420&rft_id=info:pmid/&rft_ieee_id=5723749&rfr_iscdi=true |