A Computationally Practical Simulation Estimation for Dynamic Panel Tobit Models

This paper provides a computationally practical simulation estimation for the dynamic panel Tobit model with large categories of dependence structures. The simulation estimators are conducted through correlated random effects approach. The log-likelihood function is simulated and maximized through p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Academia economic papers 2011-03, Vol.39 (1), p.1-32
1. Verfasser: 張勝凱(Sheng-Kai Chang)
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 32
container_issue 1
container_start_page 1
container_title Academia economic papers
container_volume 39
creator 張勝凱(Sheng-Kai Chang)
description This paper provides a computationally practical simulation estimation for the dynamic panel Tobit model with large categories of dependence structures. The simulation estimators are conducted through correlated random effects approach. The log-likelihood function is simulated and maximized through procedures based on a recursive algorithm formulated by GHK and Gibbs sampling simulators. The initial conditions problem is discussed in details. The simulation estimators discussed in this paper have been implemented by Scholz et al. (2006) to study retirement savings. Monte Carlo experiments indicate that the simulation estimators perform strikingly well, especially in the case of the Gibbs estimator, even for a small simulation size.
format Article
fullrecord <record><control><sourceid>proquest_airit</sourceid><recordid>TN_cdi_proquest_journals_869070009</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><airiti_id>1018161x_201103_202011040016_202011040016_1_32</airiti_id><sourcerecordid>2361207731</sourcerecordid><originalsourceid>FETCH-LOGICAL-a1529-8f73cdea6bc07d8c15879a841d1eb2d702eae46966ebc4919917a1adb25eb1d33</originalsourceid><addsrcrecordid>eNpVkFtLAzEQhRdRsNT-h-D7Qia7m8tjqfUCLRas4Nsym6SQkm3qJgv23xtbQZyX8w1zGDjnqpiABFrWsoHrzBRkCRw-botZjHuaRzSsETApNnOyCP1xTJhcOKD3J7IZUCen0ZM314_-fCDLmFx_wV0YyMPpgL3TZIMH68k2dC6RdTDWx7viZoc-2tmvTov3x-V28VyuXp9eFvNVidAwVcqdqLSxyDtNhZEaGikUyhoM2I4ZQZlFW3PFue10rUApEAhoOtbYDkxVTYv7y9_jED5HG1O7D-OQE8RWckVFzqiyaXkxoRtccn-Wn0ZyIV8towC0ynKGmlLg_xdoK1Z9A1SiX7o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>869070009</pqid></control><display><type>article</type><title>A Computationally Practical Simulation Estimation for Dynamic Panel Tobit Models</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>張勝凱(Sheng-Kai Chang)</creator><creatorcontrib>張勝凱(Sheng-Kai Chang)</creatorcontrib><description>This paper provides a computationally practical simulation estimation for the dynamic panel Tobit model with large categories of dependence structures. The simulation estimators are conducted through correlated random effects approach. The log-likelihood function is simulated and maximized through procedures based on a recursive algorithm formulated by GHK and Gibbs sampling simulators. The initial conditions problem is discussed in details. The simulation estimators discussed in this paper have been implemented by Scholz et al. (2006) to study retirement savings. Monte Carlo experiments indicate that the simulation estimators perform strikingly well, especially in the case of the Gibbs estimator, even for a small simulation size.</description><identifier>ISSN: 1018-161X</identifier><identifier>EISSN: 1810-4851</identifier><language>eng</language><publisher>Taipei: 中央研究院經濟研究所</publisher><subject>Correlation analysis ; Economic theory ; Estimating techniques ; Monte Carlo simulation ; Retirement plans ; Simulation ; Studies</subject><ispartof>Academia economic papers, 2011-03, Vol.39 (1), p.1-32</ispartof><rights>Copyright Institute of Economics, Academia Sinica Mar 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781</link.rule.ids></links><search><creatorcontrib>張勝凱(Sheng-Kai Chang)</creatorcontrib><title>A Computationally Practical Simulation Estimation for Dynamic Panel Tobit Models</title><title>Academia economic papers</title><description>This paper provides a computationally practical simulation estimation for the dynamic panel Tobit model with large categories of dependence structures. The simulation estimators are conducted through correlated random effects approach. The log-likelihood function is simulated and maximized through procedures based on a recursive algorithm formulated by GHK and Gibbs sampling simulators. The initial conditions problem is discussed in details. The simulation estimators discussed in this paper have been implemented by Scholz et al. (2006) to study retirement savings. Monte Carlo experiments indicate that the simulation estimators perform strikingly well, especially in the case of the Gibbs estimator, even for a small simulation size.</description><subject>Correlation analysis</subject><subject>Economic theory</subject><subject>Estimating techniques</subject><subject>Monte Carlo simulation</subject><subject>Retirement plans</subject><subject>Simulation</subject><subject>Studies</subject><issn>1018-161X</issn><issn>1810-4851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpVkFtLAzEQhRdRsNT-h-D7Qia7m8tjqfUCLRas4Nsym6SQkm3qJgv23xtbQZyX8w1zGDjnqpiABFrWsoHrzBRkCRw-botZjHuaRzSsETApNnOyCP1xTJhcOKD3J7IZUCen0ZM314_-fCDLmFx_wV0YyMPpgL3TZIMH68k2dC6RdTDWx7viZoc-2tmvTov3x-V28VyuXp9eFvNVidAwVcqdqLSxyDtNhZEaGikUyhoM2I4ZQZlFW3PFue10rUApEAhoOtbYDkxVTYv7y9_jED5HG1O7D-OQE8RWckVFzqiyaXkxoRtccn-Wn0ZyIV8towC0ynKGmlLg_xdoK1Z9A1SiX7o</recordid><startdate>20110301</startdate><enddate>20110301</enddate><creator>張勝凱(Sheng-Kai Chang)</creator><general>中央研究院經濟研究所</general><general>Institute of Economics, Academia Sinica</general><scope>188</scope><scope>3V.</scope><scope>7RO</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AI</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AXJJW</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BVBZV</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FREBS</scope><scope>FRNLG</scope><scope>F~G</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>M0C</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope></search><sort><creationdate>20110301</creationdate><title>A Computationally Practical Simulation Estimation for Dynamic Panel Tobit Models</title><author>張勝凱(Sheng-Kai Chang)</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a1529-8f73cdea6bc07d8c15879a841d1eb2d702eae46966ebc4919917a1adb25eb1d33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Correlation analysis</topic><topic>Economic theory</topic><topic>Estimating techniques</topic><topic>Monte Carlo simulation</topic><topic>Retirement plans</topic><topic>Simulation</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>張勝凱(Sheng-Kai Chang)</creatorcontrib><collection>Airiti Library</collection><collection>ProQuest Central (Corporate)</collection><collection>Asian Business Database</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Asian Business Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Asian &amp; European Business Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>East &amp; South Asia Database</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Asian &amp; European Business Collection (Alumni)</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Global</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Academia economic papers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>張勝凱(Sheng-Kai Chang)</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Computationally Practical Simulation Estimation for Dynamic Panel Tobit Models</atitle><jtitle>Academia economic papers</jtitle><date>2011-03-01</date><risdate>2011</risdate><volume>39</volume><issue>1</issue><spage>1</spage><epage>32</epage><pages>1-32</pages><issn>1018-161X</issn><eissn>1810-4851</eissn><abstract>This paper provides a computationally practical simulation estimation for the dynamic panel Tobit model with large categories of dependence structures. The simulation estimators are conducted through correlated random effects approach. The log-likelihood function is simulated and maximized through procedures based on a recursive algorithm formulated by GHK and Gibbs sampling simulators. The initial conditions problem is discussed in details. The simulation estimators discussed in this paper have been implemented by Scholz et al. (2006) to study retirement savings. Monte Carlo experiments indicate that the simulation estimators perform strikingly well, especially in the case of the Gibbs estimator, even for a small simulation size.</abstract><cop>Taipei</cop><pub>中央研究院經濟研究所</pub><tpages>32</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1018-161X
ispartof Academia economic papers, 2011-03, Vol.39 (1), p.1-32
issn 1018-161X
1810-4851
language eng
recordid cdi_proquest_journals_869070009
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Correlation analysis
Economic theory
Estimating techniques
Monte Carlo simulation
Retirement plans
Simulation
Studies
title A Computationally Practical Simulation Estimation for Dynamic Panel Tobit Models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T01%3A29%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_airit&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Computationally%20Practical%20Simulation%20Estimation%20for%20Dynamic%20Panel%20Tobit%20Models&rft.jtitle=Academia%20economic%20papers&rft.au=%E5%BC%B5%E5%8B%9D%E5%87%B1(Sheng-Kai%20Chang)&rft.date=2011-03-01&rft.volume=39&rft.issue=1&rft.spage=1&rft.epage=32&rft.pages=1-32&rft.issn=1018-161X&rft.eissn=1810-4851&rft_id=info:doi/&rft_dat=%3Cproquest_airit%3E2361207731%3C/proquest_airit%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=869070009&rft_id=info:pmid/&rft_airiti_id=1018161x_201103_202011040016_202011040016_1_32&rfr_iscdi=true