Multinomial mixture model with heterogeneous classification probabilities

Royle and Link (Ecology 86(9):2505–2512, 2005) proposed an analytical method that allowed estimation of multinomial distribution parameters and classification probabilities from categorical data measured with error. While useful, we demonstrate algebraically and by simulations that this method yield...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental and ecological statistics 2011-06, Vol.18 (2), p.257-270
Hauptverfasser: Holland, Mark D., Gray, Brian R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 270
container_issue 2
container_start_page 257
container_title Environmental and ecological statistics
container_volume 18
creator Holland, Mark D.
Gray, Brian R.
description Royle and Link (Ecology 86(9):2505–2512, 2005) proposed an analytical method that allowed estimation of multinomial distribution parameters and classification probabilities from categorical data measured with error. While useful, we demonstrate algebraically and by simulations that this method yields biased multinomial parameter estimates when the probabilities of correct category classifications vary among sampling units. We address this shortcoming by treating these probabilities as logit-normal random variables within a Bayesian framework. We use Markov chain Monte Carlo to compute Bayes estimates from a simulated sample from the posterior distribution. Based on simulations, this elaborated Royle-Link model yields nearly unbiased estimates of multinomial and correct classification probability estimates when classification probabilities are allowed to vary according to the normal distribution on the logit scale or according to the Beta distribution. The method is illustrated using categorical submersed aquatic vegetation data.
doi_str_mv 10.1007/s10651-009-0131-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_868772612</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2359086891</sourcerecordid><originalsourceid>FETCH-LOGICAL-c315t-581c380fa4c9997e6fa0b73328011e4f274993021851b6409c8442eabf97e39d3</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWKs_wNviPTqTbHaToxQ_ChUveg7ZbbZN2d3UJIv6702p4MnTDMPzvgMPIdcItwhQ30WESiAFUBSQI2UnZIai5pTn02neuWBUChDn5CLGHQCUyMSMLF-mPrnRD870xeC-0hRsMfi17YtPl7bF1iYb_MaO1k-xaHsTo-tca5LzY7EPvjGN611yNl6Ss8700V79zjl5f3x4WzzT1evTcnG_oi1HkaiQ2HIJnSlbpVRtq85AU3POJCDasmN1qRQHhlJgU5WgWlmWzJqmyzBXaz4nN8fe_P1jsjHpnZ_CmF9qWcm6ZhWyDOERaoOPMdhO74MbTPjWCPogTB-F6WxHH4TpQ4YdMzGz48aGv-L_Qz-JY22z</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>868772612</pqid></control><display><type>article</type><title>Multinomial mixture model with heterogeneous classification probabilities</title><source>SpringerNature Journals</source><creator>Holland, Mark D. ; Gray, Brian R.</creator><creatorcontrib>Holland, Mark D. ; Gray, Brian R.</creatorcontrib><description>Royle and Link (Ecology 86(9):2505–2512, 2005) proposed an analytical method that allowed estimation of multinomial distribution parameters and classification probabilities from categorical data measured with error. While useful, we demonstrate algebraically and by simulations that this method yields biased multinomial parameter estimates when the probabilities of correct category classifications vary among sampling units. We address this shortcoming by treating these probabilities as logit-normal random variables within a Bayesian framework. We use Markov chain Monte Carlo to compute Bayes estimates from a simulated sample from the posterior distribution. Based on simulations, this elaborated Royle-Link model yields nearly unbiased estimates of multinomial and correct classification probability estimates when classification probabilities are allowed to vary according to the normal distribution on the logit scale or according to the Beta distribution. The method is illustrated using categorical submersed aquatic vegetation data.</description><identifier>ISSN: 1352-8505</identifier><identifier>EISSN: 1573-3009</identifier><identifier>DOI: 10.1007/s10651-009-0131-2</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Aquatic plants ; Bayesian analysis ; Bias ; Biomedical and Life Sciences ; Chemistry and Earth Sciences ; Classification ; Computer Science ; Ecology ; Environmental science ; Expected values ; Health Sciences ; Life Sciences ; Markov analysis ; Markov chains ; Math. Appl. in Environmental Science ; Medicine ; Physics ; Probability ; Random variables ; Statistics for Engineering ; Statistics for Life Sciences ; Studies ; Theoretical Ecology/Statistics ; Vegetation</subject><ispartof>Environmental and ecological statistics, 2011-06, Vol.18 (2), p.257-270</ispartof><rights>Springer Science+Business Media, LLC 2010</rights><rights>Springer Science+Business Media, LLC 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c315t-581c380fa4c9997e6fa0b73328011e4f274993021851b6409c8442eabf97e39d3</citedby><cites>FETCH-LOGICAL-c315t-581c380fa4c9997e6fa0b73328011e4f274993021851b6409c8442eabf97e39d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10651-009-0131-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10651-009-0131-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Holland, Mark D.</creatorcontrib><creatorcontrib>Gray, Brian R.</creatorcontrib><title>Multinomial mixture model with heterogeneous classification probabilities</title><title>Environmental and ecological statistics</title><addtitle>Environ Ecol Stat</addtitle><description>Royle and Link (Ecology 86(9):2505–2512, 2005) proposed an analytical method that allowed estimation of multinomial distribution parameters and classification probabilities from categorical data measured with error. While useful, we demonstrate algebraically and by simulations that this method yields biased multinomial parameter estimates when the probabilities of correct category classifications vary among sampling units. We address this shortcoming by treating these probabilities as logit-normal random variables within a Bayesian framework. We use Markov chain Monte Carlo to compute Bayes estimates from a simulated sample from the posterior distribution. Based on simulations, this elaborated Royle-Link model yields nearly unbiased estimates of multinomial and correct classification probability estimates when classification probabilities are allowed to vary according to the normal distribution on the logit scale or according to the Beta distribution. The method is illustrated using categorical submersed aquatic vegetation data.</description><subject>Aquatic plants</subject><subject>Bayesian analysis</subject><subject>Bias</subject><subject>Biomedical and Life Sciences</subject><subject>Chemistry and Earth Sciences</subject><subject>Classification</subject><subject>Computer Science</subject><subject>Ecology</subject><subject>Environmental science</subject><subject>Expected values</subject><subject>Health Sciences</subject><subject>Life Sciences</subject><subject>Markov analysis</subject><subject>Markov chains</subject><subject>Math. Appl. in Environmental Science</subject><subject>Medicine</subject><subject>Physics</subject><subject>Probability</subject><subject>Random variables</subject><subject>Statistics for Engineering</subject><subject>Statistics for Life Sciences</subject><subject>Studies</subject><subject>Theoretical Ecology/Statistics</subject><subject>Vegetation</subject><issn>1352-8505</issn><issn>1573-3009</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kE1LAzEQhoMoWKs_wNviPTqTbHaToxQ_ChUveg7ZbbZN2d3UJIv6702p4MnTDMPzvgMPIdcItwhQ30WESiAFUBSQI2UnZIai5pTn02neuWBUChDn5CLGHQCUyMSMLF-mPrnRD870xeC-0hRsMfi17YtPl7bF1iYb_MaO1k-xaHsTo-tca5LzY7EPvjGN611yNl6Ss8700V79zjl5f3x4WzzT1evTcnG_oi1HkaiQ2HIJnSlbpVRtq85AU3POJCDasmN1qRQHhlJgU5WgWlmWzJqmyzBXaz4nN8fe_P1jsjHpnZ_CmF9qWcm6ZhWyDOERaoOPMdhO74MbTPjWCPogTB-F6WxHH4TpQ4YdMzGz48aGv-L_Qz-JY22z</recordid><startdate>20110601</startdate><enddate>20110601</enddate><creator>Holland, Mark D.</creator><creator>Gray, Brian R.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SN</scope><scope>7ST</scope><scope>7UA</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>H97</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L.G</scope><scope>LK8</scope><scope>M0C</scope><scope>M0N</scope><scope>M2P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>RC3</scope><scope>SOI</scope></search><sort><creationdate>20110601</creationdate><title>Multinomial mixture model with heterogeneous classification probabilities</title><author>Holland, Mark D. ; Gray, Brian R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c315t-581c380fa4c9997e6fa0b73328011e4f274993021851b6409c8442eabf97e39d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Aquatic plants</topic><topic>Bayesian analysis</topic><topic>Bias</topic><topic>Biomedical and Life Sciences</topic><topic>Chemistry and Earth Sciences</topic><topic>Classification</topic><topic>Computer Science</topic><topic>Ecology</topic><topic>Environmental science</topic><topic>Expected values</topic><topic>Health Sciences</topic><topic>Life Sciences</topic><topic>Markov analysis</topic><topic>Markov chains</topic><topic>Math. Appl. in Environmental Science</topic><topic>Medicine</topic><topic>Physics</topic><topic>Probability</topic><topic>Random variables</topic><topic>Statistics for Engineering</topic><topic>Statistics for Life Sciences</topic><topic>Studies</topic><topic>Theoretical Ecology/Statistics</topic><topic>Vegetation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Holland, Mark D.</creatorcontrib><creatorcontrib>Gray, Brian R.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Ecology Abstracts</collection><collection>Environment Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Environmental and ecological statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Holland, Mark D.</au><au>Gray, Brian R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multinomial mixture model with heterogeneous classification probabilities</atitle><jtitle>Environmental and ecological statistics</jtitle><stitle>Environ Ecol Stat</stitle><date>2011-06-01</date><risdate>2011</risdate><volume>18</volume><issue>2</issue><spage>257</spage><epage>270</epage><pages>257-270</pages><issn>1352-8505</issn><eissn>1573-3009</eissn><abstract>Royle and Link (Ecology 86(9):2505–2512, 2005) proposed an analytical method that allowed estimation of multinomial distribution parameters and classification probabilities from categorical data measured with error. While useful, we demonstrate algebraically and by simulations that this method yields biased multinomial parameter estimates when the probabilities of correct category classifications vary among sampling units. We address this shortcoming by treating these probabilities as logit-normal random variables within a Bayesian framework. We use Markov chain Monte Carlo to compute Bayes estimates from a simulated sample from the posterior distribution. Based on simulations, this elaborated Royle-Link model yields nearly unbiased estimates of multinomial and correct classification probability estimates when classification probabilities are allowed to vary according to the normal distribution on the logit scale or according to the Beta distribution. The method is illustrated using categorical submersed aquatic vegetation data.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s10651-009-0131-2</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1352-8505
ispartof Environmental and ecological statistics, 2011-06, Vol.18 (2), p.257-270
issn 1352-8505
1573-3009
language eng
recordid cdi_proquest_journals_868772612
source SpringerNature Journals
subjects Aquatic plants
Bayesian analysis
Bias
Biomedical and Life Sciences
Chemistry and Earth Sciences
Classification
Computer Science
Ecology
Environmental science
Expected values
Health Sciences
Life Sciences
Markov analysis
Markov chains
Math. Appl. in Environmental Science
Medicine
Physics
Probability
Random variables
Statistics for Engineering
Statistics for Life Sciences
Studies
Theoretical Ecology/Statistics
Vegetation
title Multinomial mixture model with heterogeneous classification probabilities
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T17%3A31%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multinomial%20mixture%20model%20with%20heterogeneous%20classification%20probabilities&rft.jtitle=Environmental%20and%20ecological%20statistics&rft.au=Holland,%20Mark%20D.&rft.date=2011-06-01&rft.volume=18&rft.issue=2&rft.spage=257&rft.epage=270&rft.pages=257-270&rft.issn=1352-8505&rft.eissn=1573-3009&rft_id=info:doi/10.1007/s10651-009-0131-2&rft_dat=%3Cproquest_cross%3E2359086891%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=868772612&rft_id=info:pmid/&rfr_iscdi=true