A recyclable supramolecular membrane for size-selective separation of nanoparticles

Most practical materials are held together by covalent bonds, which are irreversible. Materials based on noncovalent interactions can undergo reversible self-assembly, which offers advantages in terms of fabrication, processing and recyclability 1 , but the majority of noncovalent systems are too fr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature nanotechnology 2011-03, Vol.6 (3), p.141-146
Hauptverfasser: Krieg, Elisha, Weissman, Haim, Shirman, Elijah, Shimoni, Eyal, Rybtchinski, Boris
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 146
container_issue 3
container_start_page 141
container_title Nature nanotechnology
container_volume 6
creator Krieg, Elisha
Weissman, Haim
Shirman, Elijah
Shimoni, Eyal
Rybtchinski, Boris
description Most practical materials are held together by covalent bonds, which are irreversible. Materials based on noncovalent interactions can undergo reversible self-assembly, which offers advantages in terms of fabrication, processing and recyclability 1 , but the majority of noncovalent systems are too fragile to be competitive with covalent materials for practical applications, despite significant attempts to develop robust noncovalent arrays 1 , 2 , 3 , 4 . Here, we report nanostructured supramolecular membranes prepared from fibrous assemblies 5 in water. The membranes are robust due to strong hydrophobic interactions 6 , 7 , allowing their application in the size-selective separation of both metal and semiconductor nanoparticles. A thin (12 µm) membrane is used for filtration (∼5 nm cutoff), and a thicker (45 µm) membrane allows for size-selective chromatography in the sub-5 nm domain. Unlike conventional membranes, our supramolecular membranes can be disassembled using organic solvent, cleaned, reassembled and reused multiple times. Supramolecular membranes prepared from fibrous assemblies in water can be disassembled in organic solvent after use and then cleaned, reassembled and reused numerous times.
doi_str_mv 10.1038/nnano.2010.274
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_868398483</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2356992241</sourcerecordid><originalsourceid>FETCH-LOGICAL-c389t-e09b6c281a12c93d38bf0e153320adaff02c0aa1fd69d72f1d13133ae6a2760e3</originalsourceid><addsrcrecordid>eNp1kD1PwzAQhi0EoqWwMqII5rT-SGJ7rCq-pEoMwGw5zhmlSuJiJ0jl1-PSUqZO9ukev3d-ELomeEowE7Ou052bUhxryrMTNCY8EyljMj893AUfoYsQVhjnVNLsHI0ooblgjI7R6zzxYDam0WUDSRjWXreuATM02icttKXXHSTW-STU35AGiL2-_ooorLXXfe26xNlku0Ws-9o0EC7RmdVNgKv9OUHvD_dvi6d0-fL4vJgvU8OE7FPAsiwMFUQTaiSrmCgtBpLHvbCutLWYGqw1sVUhK04tqQgjjGkoNOUFBjZBt7vctXefA4RerdzguzhSiUIwKbL4xwm6OwZRRgrOJc-zSE13lPEuBA9WrX3dar9RBKutaPUrWm1Fqyg6PrjZxw5lC9UB_zMbgdkOCLHVfYD_n3sk8gchtooR</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2316779754</pqid></control><display><type>article</type><title>A recyclable supramolecular membrane for size-selective separation of nanoparticles</title><source>MEDLINE</source><source>SpringerLink Journals</source><source>Nature Journals Online</source><creator>Krieg, Elisha ; Weissman, Haim ; Shirman, Elijah ; Shimoni, Eyal ; Rybtchinski, Boris</creator><creatorcontrib>Krieg, Elisha ; Weissman, Haim ; Shirman, Elijah ; Shimoni, Eyal ; Rybtchinski, Boris</creatorcontrib><description>Most practical materials are held together by covalent bonds, which are irreversible. Materials based on noncovalent interactions can undergo reversible self-assembly, which offers advantages in terms of fabrication, processing and recyclability 1 , but the majority of noncovalent systems are too fragile to be competitive with covalent materials for practical applications, despite significant attempts to develop robust noncovalent arrays 1 , 2 , 3 , 4 . Here, we report nanostructured supramolecular membranes prepared from fibrous assemblies 5 in water. The membranes are robust due to strong hydrophobic interactions 6 , 7 , allowing their application in the size-selective separation of both metal and semiconductor nanoparticles. A thin (12 µm) membrane is used for filtration (∼5 nm cutoff), and a thicker (45 µm) membrane allows for size-selective chromatography in the sub-5 nm domain. Unlike conventional membranes, our supramolecular membranes can be disassembled using organic solvent, cleaned, reassembled and reused multiple times. Supramolecular membranes prepared from fibrous assemblies in water can be disassembled in organic solvent after use and then cleaned, reassembled and reused numerous times.</description><identifier>ISSN: 1748-3387</identifier><identifier>EISSN: 1748-3395</identifier><identifier>DOI: 10.1038/nnano.2010.274</identifier><identifier>PMID: 21258332</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/925/357/1017 ; 639/925/357/341 ; Chemical bonds ; Chromatography ; Competitive materials ; Covalent bonds ; Dismantling ; Fabrication ; Filtration ; Gold - chemistry ; Hydrophobic and Hydrophilic Interactions ; Hydrophobicity ; letter ; Macromolecular Substances - chemical synthesis ; Macromolecular Substances - chemistry ; Macromolecular Substances - ultrastructure ; Materials Science ; Membranes ; Membranes, Artificial ; Microscopy, Electron, Scanning - methods ; Microscopy, Electron, Transmission - methods ; Nanoparticles ; Nanoparticles - chemistry ; Nanoparticles - ultrastructure ; Nanotechnology ; Nanotechnology - methods ; Nanotechnology and Microengineering ; Particle Size ; Porosity ; Quantum Dots ; Recycling - methods ; Self-assembly ; Separation ; Solvents ; Surface Properties ; Ultrafiltration - methods</subject><ispartof>Nature nanotechnology, 2011-03, Vol.6 (3), p.141-146</ispartof><rights>Springer Nature Limited 2011</rights><rights>Copyright Nature Publishing Group Mar 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c389t-e09b6c281a12c93d38bf0e153320adaff02c0aa1fd69d72f1d13133ae6a2760e3</citedby><cites>FETCH-LOGICAL-c389t-e09b6c281a12c93d38bf0e153320adaff02c0aa1fd69d72f1d13133ae6a2760e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nnano.2010.274$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nnano.2010.274$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21258332$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Krieg, Elisha</creatorcontrib><creatorcontrib>Weissman, Haim</creatorcontrib><creatorcontrib>Shirman, Elijah</creatorcontrib><creatorcontrib>Shimoni, Eyal</creatorcontrib><creatorcontrib>Rybtchinski, Boris</creatorcontrib><title>A recyclable supramolecular membrane for size-selective separation of nanoparticles</title><title>Nature nanotechnology</title><addtitle>Nature Nanotech</addtitle><addtitle>Nat Nanotechnol</addtitle><description>Most practical materials are held together by covalent bonds, which are irreversible. Materials based on noncovalent interactions can undergo reversible self-assembly, which offers advantages in terms of fabrication, processing and recyclability 1 , but the majority of noncovalent systems are too fragile to be competitive with covalent materials for practical applications, despite significant attempts to develop robust noncovalent arrays 1 , 2 , 3 , 4 . Here, we report nanostructured supramolecular membranes prepared from fibrous assemblies 5 in water. The membranes are robust due to strong hydrophobic interactions 6 , 7 , allowing their application in the size-selective separation of both metal and semiconductor nanoparticles. A thin (12 µm) membrane is used for filtration (∼5 nm cutoff), and a thicker (45 µm) membrane allows for size-selective chromatography in the sub-5 nm domain. Unlike conventional membranes, our supramolecular membranes can be disassembled using organic solvent, cleaned, reassembled and reused multiple times. Supramolecular membranes prepared from fibrous assemblies in water can be disassembled in organic solvent after use and then cleaned, reassembled and reused numerous times.</description><subject>639/925/357/1017</subject><subject>639/925/357/341</subject><subject>Chemical bonds</subject><subject>Chromatography</subject><subject>Competitive materials</subject><subject>Covalent bonds</subject><subject>Dismantling</subject><subject>Fabrication</subject><subject>Filtration</subject><subject>Gold - chemistry</subject><subject>Hydrophobic and Hydrophilic Interactions</subject><subject>Hydrophobicity</subject><subject>letter</subject><subject>Macromolecular Substances - chemical synthesis</subject><subject>Macromolecular Substances - chemistry</subject><subject>Macromolecular Substances - ultrastructure</subject><subject>Materials Science</subject><subject>Membranes</subject><subject>Membranes, Artificial</subject><subject>Microscopy, Electron, Scanning - methods</subject><subject>Microscopy, Electron, Transmission - methods</subject><subject>Nanoparticles</subject><subject>Nanoparticles - chemistry</subject><subject>Nanoparticles - ultrastructure</subject><subject>Nanotechnology</subject><subject>Nanotechnology - methods</subject><subject>Nanotechnology and Microengineering</subject><subject>Particle Size</subject><subject>Porosity</subject><subject>Quantum Dots</subject><subject>Recycling - methods</subject><subject>Self-assembly</subject><subject>Separation</subject><subject>Solvents</subject><subject>Surface Properties</subject><subject>Ultrafiltration - methods</subject><issn>1748-3387</issn><issn>1748-3395</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp1kD1PwzAQhi0EoqWwMqII5rT-SGJ7rCq-pEoMwGw5zhmlSuJiJ0jl1-PSUqZO9ukev3d-ELomeEowE7Ou052bUhxryrMTNCY8EyljMj893AUfoYsQVhjnVNLsHI0ooblgjI7R6zzxYDam0WUDSRjWXreuATM02icttKXXHSTW-STU35AGiL2-_ooorLXXfe26xNlku0Ws-9o0EC7RmdVNgKv9OUHvD_dvi6d0-fL4vJgvU8OE7FPAsiwMFUQTaiSrmCgtBpLHvbCutLWYGqw1sVUhK04tqQgjjGkoNOUFBjZBt7vctXefA4RerdzguzhSiUIwKbL4xwm6OwZRRgrOJc-zSE13lPEuBA9WrX3dar9RBKutaPUrWm1Fqyg6PrjZxw5lC9UB_zMbgdkOCLHVfYD_n3sk8gchtooR</recordid><startdate>20110301</startdate><enddate>20110301</enddate><creator>Krieg, Elisha</creator><creator>Weissman, Haim</creator><creator>Shirman, Elijah</creator><creator>Shimoni, Eyal</creator><creator>Rybtchinski, Boris</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20110301</creationdate><title>A recyclable supramolecular membrane for size-selective separation of nanoparticles</title><author>Krieg, Elisha ; Weissman, Haim ; Shirman, Elijah ; Shimoni, Eyal ; Rybtchinski, Boris</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c389t-e09b6c281a12c93d38bf0e153320adaff02c0aa1fd69d72f1d13133ae6a2760e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>639/925/357/1017</topic><topic>639/925/357/341</topic><topic>Chemical bonds</topic><topic>Chromatography</topic><topic>Competitive materials</topic><topic>Covalent bonds</topic><topic>Dismantling</topic><topic>Fabrication</topic><topic>Filtration</topic><topic>Gold - chemistry</topic><topic>Hydrophobic and Hydrophilic Interactions</topic><topic>Hydrophobicity</topic><topic>letter</topic><topic>Macromolecular Substances - chemical synthesis</topic><topic>Macromolecular Substances - chemistry</topic><topic>Macromolecular Substances - ultrastructure</topic><topic>Materials Science</topic><topic>Membranes</topic><topic>Membranes, Artificial</topic><topic>Microscopy, Electron, Scanning - methods</topic><topic>Microscopy, Electron, Transmission - methods</topic><topic>Nanoparticles</topic><topic>Nanoparticles - chemistry</topic><topic>Nanoparticles - ultrastructure</topic><topic>Nanotechnology</topic><topic>Nanotechnology - methods</topic><topic>Nanotechnology and Microengineering</topic><topic>Particle Size</topic><topic>Porosity</topic><topic>Quantum Dots</topic><topic>Recycling - methods</topic><topic>Self-assembly</topic><topic>Separation</topic><topic>Solvents</topic><topic>Surface Properties</topic><topic>Ultrafiltration - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Krieg, Elisha</creatorcontrib><creatorcontrib>Weissman, Haim</creatorcontrib><creatorcontrib>Shirman, Elijah</creatorcontrib><creatorcontrib>Shimoni, Eyal</creatorcontrib><creatorcontrib>Rybtchinski, Boris</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>Nature nanotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Krieg, Elisha</au><au>Weissman, Haim</au><au>Shirman, Elijah</au><au>Shimoni, Eyal</au><au>Rybtchinski, Boris</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A recyclable supramolecular membrane for size-selective separation of nanoparticles</atitle><jtitle>Nature nanotechnology</jtitle><stitle>Nature Nanotech</stitle><addtitle>Nat Nanotechnol</addtitle><date>2011-03-01</date><risdate>2011</risdate><volume>6</volume><issue>3</issue><spage>141</spage><epage>146</epage><pages>141-146</pages><issn>1748-3387</issn><eissn>1748-3395</eissn><abstract>Most practical materials are held together by covalent bonds, which are irreversible. Materials based on noncovalent interactions can undergo reversible self-assembly, which offers advantages in terms of fabrication, processing and recyclability 1 , but the majority of noncovalent systems are too fragile to be competitive with covalent materials for practical applications, despite significant attempts to develop robust noncovalent arrays 1 , 2 , 3 , 4 . Here, we report nanostructured supramolecular membranes prepared from fibrous assemblies 5 in water. The membranes are robust due to strong hydrophobic interactions 6 , 7 , allowing their application in the size-selective separation of both metal and semiconductor nanoparticles. A thin (12 µm) membrane is used for filtration (∼5 nm cutoff), and a thicker (45 µm) membrane allows for size-selective chromatography in the sub-5 nm domain. Unlike conventional membranes, our supramolecular membranes can be disassembled using organic solvent, cleaned, reassembled and reused multiple times. Supramolecular membranes prepared from fibrous assemblies in water can be disassembled in organic solvent after use and then cleaned, reassembled and reused numerous times.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>21258332</pmid><doi>10.1038/nnano.2010.274</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1748-3387
ispartof Nature nanotechnology, 2011-03, Vol.6 (3), p.141-146
issn 1748-3387
1748-3395
language eng
recordid cdi_proquest_journals_868398483
source MEDLINE; SpringerLink Journals; Nature Journals Online
subjects 639/925/357/1017
639/925/357/341
Chemical bonds
Chromatography
Competitive materials
Covalent bonds
Dismantling
Fabrication
Filtration
Gold - chemistry
Hydrophobic and Hydrophilic Interactions
Hydrophobicity
letter
Macromolecular Substances - chemical synthesis
Macromolecular Substances - chemistry
Macromolecular Substances - ultrastructure
Materials Science
Membranes
Membranes, Artificial
Microscopy, Electron, Scanning - methods
Microscopy, Electron, Transmission - methods
Nanoparticles
Nanoparticles - chemistry
Nanoparticles - ultrastructure
Nanotechnology
Nanotechnology - methods
Nanotechnology and Microengineering
Particle Size
Porosity
Quantum Dots
Recycling - methods
Self-assembly
Separation
Solvents
Surface Properties
Ultrafiltration - methods
title A recyclable supramolecular membrane for size-selective separation of nanoparticles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T08%3A49%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20recyclable%20supramolecular%20membrane%20for%20size-selective%20separation%20of%20nanoparticles&rft.jtitle=Nature%20nanotechnology&rft.au=Krieg,%20Elisha&rft.date=2011-03-01&rft.volume=6&rft.issue=3&rft.spage=141&rft.epage=146&rft.pages=141-146&rft.issn=1748-3387&rft.eissn=1748-3395&rft_id=info:doi/10.1038/nnano.2010.274&rft_dat=%3Cproquest_cross%3E2356992241%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2316779754&rft_id=info:pmid/21258332&rfr_iscdi=true