Direct observation of single-charge-detection capability of nanowire field-effect transistors

A single localized charge can quench the luminescence of a semiconductor nanowire 1 , but relatively little is known about the effect of single charges on the conductance of the nanowire. In one-dimensional nanostructures embedded in a material with a low dielectric permittivity, the Coulomb interac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature nanotechnology 2010-10, Vol.5 (10), p.737-741
Hauptverfasser: Salfi, J, Savelyev, I. G, Blumin, M, Nair, S. V, Ruda, H. E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 741
container_issue 10
container_start_page 737
container_title Nature nanotechnology
container_volume 5
creator Salfi, J
Savelyev, I. G
Blumin, M
Nair, S. V
Ruda, H. E
description A single localized charge can quench the luminescence of a semiconductor nanowire 1 , but relatively little is known about the effect of single charges on the conductance of the nanowire. In one-dimensional nanostructures embedded in a material with a low dielectric permittivity, the Coulomb interaction and excitonic binding energy are much larger than the corresponding values when embedded in a material with the same dielectric permittivity 2 , 3 . The stronger Coulomb interaction is also predicted to limit the carrier mobility in nanowires 4 . Here, we experimentally isolate and study the effect of individual localized electrons on carrier transport in InAs nanowire field-effect transistors, and extract the equivalent charge sensitivity. In the low carrier density regime, the electrostatic potential produced by one electron can create an insulating weak link in an otherwise conducting nanowire field-effect transistor, modulating its conductance by as much as 4,200% at 31 K. The equivalent charge sensitivity, 4 × 10 −5   e  Hz −1/2 at 25 K and 6 × 10 −5   e  Hz −1/2 at 198 K, is orders of magnitude better than conventional field-effect transistors 5 and nanoelectromechanical systems 6 , 7 , and is just a factor of 20–30 away from the record sensitivity for state-of-the-art single-electron transistors operating below 4 K (ref.  8 ). This work demonstrates the feasibility of nanowire-based single-electron memories 9 and illustrates a physical process of potential relevance for high performance chemical sensors 10 , 11 . The charge-state-detection capability we demonstrate also makes the nanowire field-effect transistor a promising host system for impurities (which may be introduced intentionally or unintentionally) with potentially long spin lifetimes 12 , 13 , because such transistors offer more sensitive spin-to-charge conversion readout than schemes based on conventional field-effect transistors 13 . A single electron can modulate the conductance of an InAs nanowire field-effect transistor by as much as 4,200% at 31 K, and has a charge sensitivity of 6 × 10 −5   e  Hz −1/2 up to ∼200 K.
doi_str_mv 10.1038/nnano.2010.180
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_868393207</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2356941531</sourcerecordid><originalsourceid>FETCH-LOGICAL-c456t-d1c903bcebd2b0bd3218ee5e445132308cf494182128ffc98c6fb0fe0668411a3</originalsourceid><addsrcrecordid>eNp1kM1LAzEQxYMotlavHmURr9vma7fZo9RPKHjRoyxJdlJTttmapEr_e3fdWkHwNDPM770HD6FzgscEMzFxTrpmTHF3C3yAhmTKRcpYkR3udzEdoJMQlhhntKD8GA0oFhnNmRii1xvrQcekUQH8h4y2cUljkmDdooZUv0m_gLSC2DLdS8u1VLa2cdtRXfZnq0-MhbpKwZjOKnrpgg2x8eEUHRlZBzjbzRF6ubt9nj2k86f7x9n1PNU8y2NaEV1gpjSoiiqsKkaJAMiA84wwyrDQhhecCEqoMEYXQudGYQM4zwUnRLIRuux9175530CI5bLZeNdGliIXrGAUT1to3EPaNyF4MOXa25X025Lgsiuz_C6z7Mos2zJbwcXOdaNWUO3xn_ZaYNIDoX25Bfjf2H8tr3qFk3HjYW_5B_sC1TiONw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>868393207</pqid></control><display><type>article</type><title>Direct observation of single-charge-detection capability of nanowire field-effect transistors</title><source>SpringerLINK Journals</source><source>Nature Journals Online</source><creator>Salfi, J ; Savelyev, I. G ; Blumin, M ; Nair, S. V ; Ruda, H. E</creator><creatorcontrib>Salfi, J ; Savelyev, I. G ; Blumin, M ; Nair, S. V ; Ruda, H. E</creatorcontrib><description>A single localized charge can quench the luminescence of a semiconductor nanowire 1 , but relatively little is known about the effect of single charges on the conductance of the nanowire. In one-dimensional nanostructures embedded in a material with a low dielectric permittivity, the Coulomb interaction and excitonic binding energy are much larger than the corresponding values when embedded in a material with the same dielectric permittivity 2 , 3 . The stronger Coulomb interaction is also predicted to limit the carrier mobility in nanowires 4 . Here, we experimentally isolate and study the effect of individual localized electrons on carrier transport in InAs nanowire field-effect transistors, and extract the equivalent charge sensitivity. In the low carrier density regime, the electrostatic potential produced by one electron can create an insulating weak link in an otherwise conducting nanowire field-effect transistor, modulating its conductance by as much as 4,200% at 31 K. The equivalent charge sensitivity, 4 × 10 −5   e  Hz −1/2 at 25 K and 6 × 10 −5   e  Hz −1/2 at 198 K, is orders of magnitude better than conventional field-effect transistors 5 and nanoelectromechanical systems 6 , 7 , and is just a factor of 20–30 away from the record sensitivity for state-of-the-art single-electron transistors operating below 4 K (ref.  8 ). This work demonstrates the feasibility of nanowire-based single-electron memories 9 and illustrates a physical process of potential relevance for high performance chemical sensors 10 , 11 . The charge-state-detection capability we demonstrate also makes the nanowire field-effect transistor a promising host system for impurities (which may be introduced intentionally or unintentionally) with potentially long spin lifetimes 12 , 13 , because such transistors offer more sensitive spin-to-charge conversion readout than schemes based on conventional field-effect transistors 13 . A single electron can modulate the conductance of an InAs nanowire field-effect transistor by as much as 4,200% at 31 K, and has a charge sensitivity of 6 × 10 −5   e  Hz −1/2 up to ∼200 K.</description><identifier>ISSN: 1748-3387</identifier><identifier>EISSN: 1748-3395</identifier><identifier>DOI: 10.1038/nnano.2010.180</identifier><identifier>PMID: 20852638</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/925/357/1016 ; 639/925/357/995 ; 639/925/927/1007 ; 639/925/927/356 ; Chemistry and Materials Science ; Conductance ; Electrons ; letter ; Luminescence ; Materials Science ; Molecular beam epitaxy ; Nanotechnology ; Nanotechnology and Microengineering ; Nanowires ; Sensors ; Transistors</subject><ispartof>Nature nanotechnology, 2010-10, Vol.5 (10), p.737-741</ispartof><rights>Springer Nature Limited 2010</rights><rights>Copyright Nature Publishing Group Oct 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c456t-d1c903bcebd2b0bd3218ee5e445132308cf494182128ffc98c6fb0fe0668411a3</citedby><cites>FETCH-LOGICAL-c456t-d1c903bcebd2b0bd3218ee5e445132308cf494182128ffc98c6fb0fe0668411a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nnano.2010.180$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nnano.2010.180$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,2727,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20852638$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Salfi, J</creatorcontrib><creatorcontrib>Savelyev, I. G</creatorcontrib><creatorcontrib>Blumin, M</creatorcontrib><creatorcontrib>Nair, S. V</creatorcontrib><creatorcontrib>Ruda, H. E</creatorcontrib><title>Direct observation of single-charge-detection capability of nanowire field-effect transistors</title><title>Nature nanotechnology</title><addtitle>Nature Nanotech</addtitle><addtitle>Nat Nanotechnol</addtitle><description>A single localized charge can quench the luminescence of a semiconductor nanowire 1 , but relatively little is known about the effect of single charges on the conductance of the nanowire. In one-dimensional nanostructures embedded in a material with a low dielectric permittivity, the Coulomb interaction and excitonic binding energy are much larger than the corresponding values when embedded in a material with the same dielectric permittivity 2 , 3 . The stronger Coulomb interaction is also predicted to limit the carrier mobility in nanowires 4 . Here, we experimentally isolate and study the effect of individual localized electrons on carrier transport in InAs nanowire field-effect transistors, and extract the equivalent charge sensitivity. In the low carrier density regime, the electrostatic potential produced by one electron can create an insulating weak link in an otherwise conducting nanowire field-effect transistor, modulating its conductance by as much as 4,200% at 31 K. The equivalent charge sensitivity, 4 × 10 −5   e  Hz −1/2 at 25 K and 6 × 10 −5   e  Hz −1/2 at 198 K, is orders of magnitude better than conventional field-effect transistors 5 and nanoelectromechanical systems 6 , 7 , and is just a factor of 20–30 away from the record sensitivity for state-of-the-art single-electron transistors operating below 4 K (ref.  8 ). This work demonstrates the feasibility of nanowire-based single-electron memories 9 and illustrates a physical process of potential relevance for high performance chemical sensors 10 , 11 . The charge-state-detection capability we demonstrate also makes the nanowire field-effect transistor a promising host system for impurities (which may be introduced intentionally or unintentionally) with potentially long spin lifetimes 12 , 13 , because such transistors offer more sensitive spin-to-charge conversion readout than schemes based on conventional field-effect transistors 13 . A single electron can modulate the conductance of an InAs nanowire field-effect transistor by as much as 4,200% at 31 K, and has a charge sensitivity of 6 × 10 −5   e  Hz −1/2 up to ∼200 K.</description><subject>639/925/357/1016</subject><subject>639/925/357/995</subject><subject>639/925/927/1007</subject><subject>639/925/927/356</subject><subject>Chemistry and Materials Science</subject><subject>Conductance</subject><subject>Electrons</subject><subject>letter</subject><subject>Luminescence</subject><subject>Materials Science</subject><subject>Molecular beam epitaxy</subject><subject>Nanotechnology</subject><subject>Nanotechnology and Microengineering</subject><subject>Nanowires</subject><subject>Sensors</subject><subject>Transistors</subject><issn>1748-3387</issn><issn>1748-3395</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kM1LAzEQxYMotlavHmURr9vma7fZo9RPKHjRoyxJdlJTttmapEr_e3fdWkHwNDPM770HD6FzgscEMzFxTrpmTHF3C3yAhmTKRcpYkR3udzEdoJMQlhhntKD8GA0oFhnNmRii1xvrQcekUQH8h4y2cUljkmDdooZUv0m_gLSC2DLdS8u1VLa2cdtRXfZnq0-MhbpKwZjOKnrpgg2x8eEUHRlZBzjbzRF6ubt9nj2k86f7x9n1PNU8y2NaEV1gpjSoiiqsKkaJAMiA84wwyrDQhhecCEqoMEYXQudGYQM4zwUnRLIRuux9175530CI5bLZeNdGliIXrGAUT1to3EPaNyF4MOXa25X025Lgsiuz_C6z7Mos2zJbwcXOdaNWUO3xn_ZaYNIDoX25Bfjf2H8tr3qFk3HjYW_5B_sC1TiONw</recordid><startdate>20101001</startdate><enddate>20101001</enddate><creator>Salfi, J</creator><creator>Savelyev, I. G</creator><creator>Blumin, M</creator><creator>Nair, S. V</creator><creator>Ruda, H. E</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20101001</creationdate><title>Direct observation of single-charge-detection capability of nanowire field-effect transistors</title><author>Salfi, J ; Savelyev, I. G ; Blumin, M ; Nair, S. V ; Ruda, H. E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c456t-d1c903bcebd2b0bd3218ee5e445132308cf494182128ffc98c6fb0fe0668411a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>639/925/357/1016</topic><topic>639/925/357/995</topic><topic>639/925/927/1007</topic><topic>639/925/927/356</topic><topic>Chemistry and Materials Science</topic><topic>Conductance</topic><topic>Electrons</topic><topic>letter</topic><topic>Luminescence</topic><topic>Materials Science</topic><topic>Molecular beam epitaxy</topic><topic>Nanotechnology</topic><topic>Nanotechnology and Microengineering</topic><topic>Nanowires</topic><topic>Sensors</topic><topic>Transistors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Salfi, J</creatorcontrib><creatorcontrib>Savelyev, I. G</creatorcontrib><creatorcontrib>Blumin, M</creatorcontrib><creatorcontrib>Nair, S. V</creatorcontrib><creatorcontrib>Ruda, H. E</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest - Health &amp; Medical Complete保健、医学与药学数据库</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>Nature nanotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Salfi, J</au><au>Savelyev, I. G</au><au>Blumin, M</au><au>Nair, S. V</au><au>Ruda, H. E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Direct observation of single-charge-detection capability of nanowire field-effect transistors</atitle><jtitle>Nature nanotechnology</jtitle><stitle>Nature Nanotech</stitle><addtitle>Nat Nanotechnol</addtitle><date>2010-10-01</date><risdate>2010</risdate><volume>5</volume><issue>10</issue><spage>737</spage><epage>741</epage><pages>737-741</pages><issn>1748-3387</issn><eissn>1748-3395</eissn><abstract>A single localized charge can quench the luminescence of a semiconductor nanowire 1 , but relatively little is known about the effect of single charges on the conductance of the nanowire. In one-dimensional nanostructures embedded in a material with a low dielectric permittivity, the Coulomb interaction and excitonic binding energy are much larger than the corresponding values when embedded in a material with the same dielectric permittivity 2 , 3 . The stronger Coulomb interaction is also predicted to limit the carrier mobility in nanowires 4 . Here, we experimentally isolate and study the effect of individual localized electrons on carrier transport in InAs nanowire field-effect transistors, and extract the equivalent charge sensitivity. In the low carrier density regime, the electrostatic potential produced by one electron can create an insulating weak link in an otherwise conducting nanowire field-effect transistor, modulating its conductance by as much as 4,200% at 31 K. The equivalent charge sensitivity, 4 × 10 −5   e  Hz −1/2 at 25 K and 6 × 10 −5   e  Hz −1/2 at 198 K, is orders of magnitude better than conventional field-effect transistors 5 and nanoelectromechanical systems 6 , 7 , and is just a factor of 20–30 away from the record sensitivity for state-of-the-art single-electron transistors operating below 4 K (ref.  8 ). This work demonstrates the feasibility of nanowire-based single-electron memories 9 and illustrates a physical process of potential relevance for high performance chemical sensors 10 , 11 . The charge-state-detection capability we demonstrate also makes the nanowire field-effect transistor a promising host system for impurities (which may be introduced intentionally or unintentionally) with potentially long spin lifetimes 12 , 13 , because such transistors offer more sensitive spin-to-charge conversion readout than schemes based on conventional field-effect transistors 13 . A single electron can modulate the conductance of an InAs nanowire field-effect transistor by as much as 4,200% at 31 K, and has a charge sensitivity of 6 × 10 −5   e  Hz −1/2 up to ∼200 K.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>20852638</pmid><doi>10.1038/nnano.2010.180</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1748-3387
ispartof Nature nanotechnology, 2010-10, Vol.5 (10), p.737-741
issn 1748-3387
1748-3395
language eng
recordid cdi_proquest_journals_868393207
source SpringerLINK Journals; Nature Journals Online
subjects 639/925/357/1016
639/925/357/995
639/925/927/1007
639/925/927/356
Chemistry and Materials Science
Conductance
Electrons
letter
Luminescence
Materials Science
Molecular beam epitaxy
Nanotechnology
Nanotechnology and Microengineering
Nanowires
Sensors
Transistors
title Direct observation of single-charge-detection capability of nanowire field-effect transistors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T16%3A35%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Direct%20observation%20of%20single-charge-detection%20capability%20of%20nanowire%20field-effect%20transistors&rft.jtitle=Nature%20nanotechnology&rft.au=Salfi,%20J&rft.date=2010-10-01&rft.volume=5&rft.issue=10&rft.spage=737&rft.epage=741&rft.pages=737-741&rft.issn=1748-3387&rft.eissn=1748-3395&rft_id=info:doi/10.1038/nnano.2010.180&rft_dat=%3Cproquest_cross%3E2356941531%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=868393207&rft_id=info:pmid/20852638&rfr_iscdi=true