Reduction of thermal conductivity in phononic nanomesh structures

Controlling the thermal conductivity of a material independently of its electrical conductivity continues to be a goal for researchers working on thermoelectric materials for use in energy applications 1 , 2 and in the cooling of integrated circuits 3 . In principle, the thermal conductivity κ and t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature nanotechnology 2010-10, Vol.5 (10), p.718-721
Hauptverfasser: Yu, Jen-Kan, Mitrovic, Slobodan, Tham, Douglas, Varghese, Joseph, Heath, James R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 721
container_issue 10
container_start_page 718
container_title Nature nanotechnology
container_volume 5
creator Yu, Jen-Kan
Mitrovic, Slobodan
Tham, Douglas
Varghese, Joseph
Heath, James R.
description Controlling the thermal conductivity of a material independently of its electrical conductivity continues to be a goal for researchers working on thermoelectric materials for use in energy applications 1 , 2 and in the cooling of integrated circuits 3 . In principle, the thermal conductivity κ and the electrical conductivity σ may be independently optimized in semiconducting nanostructures because different length scales are associated with phonons (which carry heat) and electric charges (which carry current). Phonons are scattered at surfaces and interfaces, so κ generally decreases as the surface-to-volume ratio increases. In contrast, σ is less sensitive to a decrease in nanostructure size, although at sufficiently small sizes it will degrade through the scattering of charge carriers at interfaces 4 . Here, we demonstrate an approach to independently controlling κ based on altering the phonon band structure of a semiconductor thin film through the formation of a phononic nanomesh film. These films are patterned with periodic spacings that are comparable to, or shorter than, the phonon mean free path. The nanomesh structure exhibits a substantially lower thermal conductivity than an equivalently prepared array of silicon nanowires, even though this array has a significantly higher surface-to-volume ratio. Bulk-like electrical conductivity is preserved. We suggest that this development is a step towards a coherent mechanism for lowering thermal conductivity. Patterning thin films of silicon can reduce their thermal conductivity by modifying the phonon band structure.
doi_str_mv 10.1038/nnano.2010.149
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_868393204</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2356941491</sourcerecordid><originalsourceid>FETCH-LOGICAL-c427t-4550b0fb9cff33132e61c8edbc2bf4102a793bc25e439a19e3adaf433f0d0c3a3</originalsourceid><addsrcrecordid>eNp1kM9PwyAYhonRuDm9ejSN927AR9dyXBZ_JUtMjJ4JpeC6rDChNdl_L13nPHmC7-PhfZMHoVuCpwRDMbNWWjeluJ8ZP0NjkrMiBeDZ-ele5CN0FcIG44xyyi7RiOJ5lme8GKPFm6461dbOJs4k7Vr7Rm4T5exh-123-6S2yW7trLO1Svq2Rod1Elofgc7rcI0ujNwGfXM8J-jj8eF9-ZyuXp9elotVqhjN25RlGS6xKbkyBoAA1XOiCl2VipaGEUxlziEOmWbAJeEaZCUNAzC4wgokTND9kLvz7qvToRUb13kbK0UxL4ADxSxC0wFS3oXgtRE7XzfS7wXBohcmDsJEL0xEYfHD3TG1KxtdnfBfQxGYDUCIT_ZT-7_afyJ_AMC5eCQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>868393204</pqid></control><display><type>article</type><title>Reduction of thermal conductivity in phononic nanomesh structures</title><source>Springer Nature - Complete Springer Journals</source><source>Nature</source><creator>Yu, Jen-Kan ; Mitrovic, Slobodan ; Tham, Douglas ; Varghese, Joseph ; Heath, James R.</creator><creatorcontrib>Yu, Jen-Kan ; Mitrovic, Slobodan ; Tham, Douglas ; Varghese, Joseph ; Heath, James R.</creatorcontrib><description>Controlling the thermal conductivity of a material independently of its electrical conductivity continues to be a goal for researchers working on thermoelectric materials for use in energy applications 1 , 2 and in the cooling of integrated circuits 3 . In principle, the thermal conductivity κ and the electrical conductivity σ may be independently optimized in semiconducting nanostructures because different length scales are associated with phonons (which carry heat) and electric charges (which carry current). Phonons are scattered at surfaces and interfaces, so κ generally decreases as the surface-to-volume ratio increases. In contrast, σ is less sensitive to a decrease in nanostructure size, although at sufficiently small sizes it will degrade through the scattering of charge carriers at interfaces 4 . Here, we demonstrate an approach to independently controlling κ based on altering the phonon band structure of a semiconductor thin film through the formation of a phononic nanomesh film. These films are patterned with periodic spacings that are comparable to, or shorter than, the phonon mean free path. The nanomesh structure exhibits a substantially lower thermal conductivity than an equivalently prepared array of silicon nanowires, even though this array has a significantly higher surface-to-volume ratio. Bulk-like electrical conductivity is preserved. We suggest that this development is a step towards a coherent mechanism for lowering thermal conductivity. Patterning thin films of silicon can reduce their thermal conductivity by modifying the phonon band structure.</description><identifier>ISSN: 1748-3387</identifier><identifier>EISSN: 1748-3395</identifier><identifier>DOI: 10.1038/nnano.2010.149</identifier><identifier>PMID: 20657598</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/638/440/951 ; 639/766/419 ; 639/925/350/2093 ; 639/925/357/537 ; Chemistry and Materials Science ; Conductivity ; Cooling ; Heat conductivity ; letter ; Materials Science ; Nanotechnology ; Nanotechnology and Microengineering ; Nanowires ; Silicon ; Thermal conductivity ; Thin films</subject><ispartof>Nature nanotechnology, 2010-10, Vol.5 (10), p.718-721</ispartof><rights>Springer Nature Limited 2010</rights><rights>Copyright Nature Publishing Group Oct 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c427t-4550b0fb9cff33132e61c8edbc2bf4102a793bc25e439a19e3adaf433f0d0c3a3</citedby><cites>FETCH-LOGICAL-c427t-4550b0fb9cff33132e61c8edbc2bf4102a793bc25e439a19e3adaf433f0d0c3a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nnano.2010.149$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nnano.2010.149$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20657598$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yu, Jen-Kan</creatorcontrib><creatorcontrib>Mitrovic, Slobodan</creatorcontrib><creatorcontrib>Tham, Douglas</creatorcontrib><creatorcontrib>Varghese, Joseph</creatorcontrib><creatorcontrib>Heath, James R.</creatorcontrib><title>Reduction of thermal conductivity in phononic nanomesh structures</title><title>Nature nanotechnology</title><addtitle>Nature Nanotech</addtitle><addtitle>Nat Nanotechnol</addtitle><description>Controlling the thermal conductivity of a material independently of its electrical conductivity continues to be a goal for researchers working on thermoelectric materials for use in energy applications 1 , 2 and in the cooling of integrated circuits 3 . In principle, the thermal conductivity κ and the electrical conductivity σ may be independently optimized in semiconducting nanostructures because different length scales are associated with phonons (which carry heat) and electric charges (which carry current). Phonons are scattered at surfaces and interfaces, so κ generally decreases as the surface-to-volume ratio increases. In contrast, σ is less sensitive to a decrease in nanostructure size, although at sufficiently small sizes it will degrade through the scattering of charge carriers at interfaces 4 . Here, we demonstrate an approach to independently controlling κ based on altering the phonon band structure of a semiconductor thin film through the formation of a phononic nanomesh film. These films are patterned with periodic spacings that are comparable to, or shorter than, the phonon mean free path. The nanomesh structure exhibits a substantially lower thermal conductivity than an equivalently prepared array of silicon nanowires, even though this array has a significantly higher surface-to-volume ratio. Bulk-like electrical conductivity is preserved. We suggest that this development is a step towards a coherent mechanism for lowering thermal conductivity. Patterning thin films of silicon can reduce their thermal conductivity by modifying the phonon band structure.</description><subject>639/638/440/951</subject><subject>639/766/419</subject><subject>639/925/350/2093</subject><subject>639/925/357/537</subject><subject>Chemistry and Materials Science</subject><subject>Conductivity</subject><subject>Cooling</subject><subject>Heat conductivity</subject><subject>letter</subject><subject>Materials Science</subject><subject>Nanotechnology</subject><subject>Nanotechnology and Microengineering</subject><subject>Nanowires</subject><subject>Silicon</subject><subject>Thermal conductivity</subject><subject>Thin films</subject><issn>1748-3387</issn><issn>1748-3395</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kM9PwyAYhonRuDm9ejSN927AR9dyXBZ_JUtMjJ4JpeC6rDChNdl_L13nPHmC7-PhfZMHoVuCpwRDMbNWWjeluJ8ZP0NjkrMiBeDZ-ele5CN0FcIG44xyyi7RiOJ5lme8GKPFm6461dbOJs4k7Vr7Rm4T5exh-123-6S2yW7trLO1Svq2Rod1Elofgc7rcI0ujNwGfXM8J-jj8eF9-ZyuXp9elotVqhjN25RlGS6xKbkyBoAA1XOiCl2VipaGEUxlziEOmWbAJeEaZCUNAzC4wgokTND9kLvz7qvToRUb13kbK0UxL4ADxSxC0wFS3oXgtRE7XzfS7wXBohcmDsJEL0xEYfHD3TG1KxtdnfBfQxGYDUCIT_ZT-7_afyJ_AMC5eCQ</recordid><startdate>20101001</startdate><enddate>20101001</enddate><creator>Yu, Jen-Kan</creator><creator>Mitrovic, Slobodan</creator><creator>Tham, Douglas</creator><creator>Varghese, Joseph</creator><creator>Heath, James R.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20101001</creationdate><title>Reduction of thermal conductivity in phononic nanomesh structures</title><author>Yu, Jen-Kan ; Mitrovic, Slobodan ; Tham, Douglas ; Varghese, Joseph ; Heath, James R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c427t-4550b0fb9cff33132e61c8edbc2bf4102a793bc25e439a19e3adaf433f0d0c3a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>639/638/440/951</topic><topic>639/766/419</topic><topic>639/925/350/2093</topic><topic>639/925/357/537</topic><topic>Chemistry and Materials Science</topic><topic>Conductivity</topic><topic>Cooling</topic><topic>Heat conductivity</topic><topic>letter</topic><topic>Materials Science</topic><topic>Nanotechnology</topic><topic>Nanotechnology and Microengineering</topic><topic>Nanowires</topic><topic>Silicon</topic><topic>Thermal conductivity</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Jen-Kan</creatorcontrib><creatorcontrib>Mitrovic, Slobodan</creatorcontrib><creatorcontrib>Tham, Douglas</creatorcontrib><creatorcontrib>Varghese, Joseph</creatorcontrib><creatorcontrib>Heath, James R.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Biological Science Journals</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>Nature nanotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Jen-Kan</au><au>Mitrovic, Slobodan</au><au>Tham, Douglas</au><au>Varghese, Joseph</au><au>Heath, James R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reduction of thermal conductivity in phononic nanomesh structures</atitle><jtitle>Nature nanotechnology</jtitle><stitle>Nature Nanotech</stitle><addtitle>Nat Nanotechnol</addtitle><date>2010-10-01</date><risdate>2010</risdate><volume>5</volume><issue>10</issue><spage>718</spage><epage>721</epage><pages>718-721</pages><issn>1748-3387</issn><eissn>1748-3395</eissn><abstract>Controlling the thermal conductivity of a material independently of its electrical conductivity continues to be a goal for researchers working on thermoelectric materials for use in energy applications 1 , 2 and in the cooling of integrated circuits 3 . In principle, the thermal conductivity κ and the electrical conductivity σ may be independently optimized in semiconducting nanostructures because different length scales are associated with phonons (which carry heat) and electric charges (which carry current). Phonons are scattered at surfaces and interfaces, so κ generally decreases as the surface-to-volume ratio increases. In contrast, σ is less sensitive to a decrease in nanostructure size, although at sufficiently small sizes it will degrade through the scattering of charge carriers at interfaces 4 . Here, we demonstrate an approach to independently controlling κ based on altering the phonon band structure of a semiconductor thin film through the formation of a phononic nanomesh film. These films are patterned with periodic spacings that are comparable to, or shorter than, the phonon mean free path. The nanomesh structure exhibits a substantially lower thermal conductivity than an equivalently prepared array of silicon nanowires, even though this array has a significantly higher surface-to-volume ratio. Bulk-like electrical conductivity is preserved. We suggest that this development is a step towards a coherent mechanism for lowering thermal conductivity. Patterning thin films of silicon can reduce their thermal conductivity by modifying the phonon band structure.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>20657598</pmid><doi>10.1038/nnano.2010.149</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1748-3387
ispartof Nature nanotechnology, 2010-10, Vol.5 (10), p.718-721
issn 1748-3387
1748-3395
language eng
recordid cdi_proquest_journals_868393204
source Springer Nature - Complete Springer Journals; Nature
subjects 639/638/440/951
639/766/419
639/925/350/2093
639/925/357/537
Chemistry and Materials Science
Conductivity
Cooling
Heat conductivity
letter
Materials Science
Nanotechnology
Nanotechnology and Microengineering
Nanowires
Silicon
Thermal conductivity
Thin films
title Reduction of thermal conductivity in phononic nanomesh structures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T18%3A09%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reduction%20of%20thermal%20conductivity%20in%20phononic%20nanomesh%20structures&rft.jtitle=Nature%20nanotechnology&rft.au=Yu,%20Jen-Kan&rft.date=2010-10-01&rft.volume=5&rft.issue=10&rft.spage=718&rft.epage=721&rft.pages=718-721&rft.issn=1748-3387&rft.eissn=1748-3395&rft_id=info:doi/10.1038/nnano.2010.149&rft_dat=%3Cproquest_cross%3E2356941491%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=868393204&rft_id=info:pmid/20657598&rfr_iscdi=true