Autophagy differentially controls plant basal immunity to biotrophic and necrotrophic pathogens

Summary In plants, autophagy has been assigned ‘pro‐death’ and ‘pro‐survival’ roles in controlling programmed cell death associated with microbial effector‐triggered immunity. The role of autophagy in basal immunity to virulent pathogens has not been addressed systematically, however. Using several...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Plant journal : for cell and molecular biology 2011-06, Vol.66 (5), p.818-830
Hauptverfasser: Lenz, Heike D., Haller, Eva, Melzer, Eric, Kober, Karina, Wurster, Karl, Stahl, Mark, Bassham, Diane C., Vierstra, Richard D., Parker, Jane E., Bautor, Jaqueline, Molina, Antonio, Escudero, Viviana, Shindo, Takayuki, van der Hoorn, Renier A. L., Gust, Andrea A., Nürnberger, Thorsten
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 830
container_issue 5
container_start_page 818
container_title The Plant journal : for cell and molecular biology
container_volume 66
creator Lenz, Heike D.
Haller, Eva
Melzer, Eric
Kober, Karina
Wurster, Karl
Stahl, Mark
Bassham, Diane C.
Vierstra, Richard D.
Parker, Jane E.
Bautor, Jaqueline
Molina, Antonio
Escudero, Viviana
Shindo, Takayuki
van der Hoorn, Renier A. L.
Gust, Andrea A.
Nürnberger, Thorsten
description Summary In plants, autophagy has been assigned ‘pro‐death’ and ‘pro‐survival’ roles in controlling programmed cell death associated with microbial effector‐triggered immunity. The role of autophagy in basal immunity to virulent pathogens has not been addressed systematically, however. Using several autophagy‐deficient (atg) genotypes, we determined the function of autophagy in basal plant immunity. Arabidopsis mutants lacking ATG5, ATG10 and ATG18a develop spreading necrosis upon infection with the necrotrophic fungal pathogen, Alternaria brassicicola, which is accompanied by the production of reactive oxygen intermediates and by enhanced hyphal growth. Likewise, treatment with the fungal toxin fumonisin B1 causes spreading lesion formation in atg mutant genotypes. We suggest that autophagy constitutes a ‘pro‐survival’ mechanism that controls the containment of host tissue‐destructive microbial infections. In contrast, atg plants do not show spreading necrosis, but exhibit marked resistance against the virulent biotrophic phytopathogen, Pseudomonas syringae pv. tomato. Inducible defenses associated with basal plant immunity, such as callose production or mitogen‐activated protein kinase activation, were unaltered in atg genotypes. However, phytohormone analysis revealed that salicylic acid (SA) levels in non‐infected and bacteria‐infected atg plants were slightly higher than those in Col‐0 plants, and were accompanied by elevated SA‐dependent gene expression and camalexin production. This suggests that previously undetected moderate infection‐induced rises in SA result in measurably enhanced bacterial resistance, and that autophagy negatively controls SA‐dependent defenses and basal immunity to bacterial infection. We infer that the way in which autophagy contributes to plant immunity to different pathogens is mechanistically diverse, and thus resembles the complex role of this process in animal innate immunity.
doi_str_mv 10.1111/j.1365-313X.2011.04546.x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_868255045</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2356122411</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4916-b6ebfb6cb1bca9f61099b0180a733f67481efcf0310ee9645ce497f583744e553</originalsourceid><addsrcrecordid>eNqNkE2P0zAQhi20iO0u_AVkIe0xwRN_JDlwWK2ABa0EhyJxs2zXbl2lTrATbfPvcWgpV3yxNX7mndGDEAZSQj7v9yVQwQsK9GdZEYCSMM5EeXyBVpePK7QirSBFzaC6Rjcp7QmBmgr2Cl1XQGnVsGaF5P009sNObWe88c7ZaMPoVdfN2PRhjH2X8NCpMGKtkuqwPxym4McZjz3Wvs_AsPMGq7DBwZp4KQxq3PVbG9Jr9NKpLtk35_sW_fj0cf3wWDx9-_zl4f6pMKwFUWhhtdPCaNBGtU4AaVtNoCGqptSJmjVgnXGEArG2FYwby9ra8YbWjFnO6S16d8odYv9rsmmU-36KIY-UjWgqzrOhDDUnKG-aUrRODtEfVJwlELmIlXu5-JOLP7mIlX_EymNufXvOn_TBbi6Nf01m4O4MqGRU56IKxqd_HIOW04pl7sOJe_adnf97Abn-_nV50d-PjZW4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>868255045</pqid></control><display><type>article</type><title>Autophagy differentially controls plant basal immunity to biotrophic and necrotrophic pathogens</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Access via Wiley Online Library</source><source>IngentaConnect Free/Open Access Journals</source><source>Wiley Online Library (Open Access Collection)</source><creator>Lenz, Heike D. ; Haller, Eva ; Melzer, Eric ; Kober, Karina ; Wurster, Karl ; Stahl, Mark ; Bassham, Diane C. ; Vierstra, Richard D. ; Parker, Jane E. ; Bautor, Jaqueline ; Molina, Antonio ; Escudero, Viviana ; Shindo, Takayuki ; van der Hoorn, Renier A. L. ; Gust, Andrea A. ; Nürnberger, Thorsten</creator><creatorcontrib>Lenz, Heike D. ; Haller, Eva ; Melzer, Eric ; Kober, Karina ; Wurster, Karl ; Stahl, Mark ; Bassham, Diane C. ; Vierstra, Richard D. ; Parker, Jane E. ; Bautor, Jaqueline ; Molina, Antonio ; Escudero, Viviana ; Shindo, Takayuki ; van der Hoorn, Renier A. L. ; Gust, Andrea A. ; Nürnberger, Thorsten</creatorcontrib><description>Summary In plants, autophagy has been assigned ‘pro‐death’ and ‘pro‐survival’ roles in controlling programmed cell death associated with microbial effector‐triggered immunity. The role of autophagy in basal immunity to virulent pathogens has not been addressed systematically, however. Using several autophagy‐deficient (atg) genotypes, we determined the function of autophagy in basal plant immunity. Arabidopsis mutants lacking ATG5, ATG10 and ATG18a develop spreading necrosis upon infection with the necrotrophic fungal pathogen, Alternaria brassicicola, which is accompanied by the production of reactive oxygen intermediates and by enhanced hyphal growth. Likewise, treatment with the fungal toxin fumonisin B1 causes spreading lesion formation in atg mutant genotypes. We suggest that autophagy constitutes a ‘pro‐survival’ mechanism that controls the containment of host tissue‐destructive microbial infections. In contrast, atg plants do not show spreading necrosis, but exhibit marked resistance against the virulent biotrophic phytopathogen, Pseudomonas syringae pv. tomato. Inducible defenses associated with basal plant immunity, such as callose production or mitogen‐activated protein kinase activation, were unaltered in atg genotypes. However, phytohormone analysis revealed that salicylic acid (SA) levels in non‐infected and bacteria‐infected atg plants were slightly higher than those in Col‐0 plants, and were accompanied by elevated SA‐dependent gene expression and camalexin production. This suggests that previously undetected moderate infection‐induced rises in SA result in measurably enhanced bacterial resistance, and that autophagy negatively controls SA‐dependent defenses and basal immunity to bacterial infection. We infer that the way in which autophagy contributes to plant immunity to different pathogens is mechanistically diverse, and thus resembles the complex role of this process in animal innate immunity.</description><identifier>ISSN: 0960-7412</identifier><identifier>EISSN: 1365-313X</identifier><identifier>DOI: 10.1111/j.1365-313X.2011.04546.x</identifier><identifier>PMID: 21332848</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Alternaria - immunology ; Alternaria - pathogenicity ; Arabidopsis ; Arabidopsis - genetics ; Arabidopsis - immunology ; Arabidopsis - microbiology ; Arabidopsis Proteins - metabolism ; ATG gene ; Autophagy ; Autophagy - genetics ; Autophagy - immunology ; Autophagy-Related Protein 5 ; Autophagy-Related Proteins ; basal immunity ; Biological and medical sciences ; Ethylenes - metabolism ; Fumonisins - metabolism ; Fundamental and applied biological sciences. Psychology ; Gene Expression Regulation, Plant ; Genetic Complementation Test ; Genetic Loci ; Genetic Pleiotropy ; Immunity, Innate ; Indoles - metabolism ; Pathogens ; Phosphoric Monoester Hydrolases - metabolism ; Plant Growth Regulators - metabolism ; Plant Leaves - metabolism ; Plant Leaves - microbiology ; Plant physiology and development ; Plant sciences ; Pseudomonas syringae - immunology ; Pseudomonas syringae - pathogenicity ; salicylic acid ; Salicylic Acid - metabolism ; Thiazoles - metabolism</subject><ispartof>The Plant journal : for cell and molecular biology, 2011-06, Vol.66 (5), p.818-830</ispartof><rights>2011 The Authors. The Plant Journal © 2011 Blackwell Publishing Ltd</rights><rights>2015 INIST-CNRS</rights><rights>2011 The Authors. The Plant Journal © 2011 Blackwell Publishing Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4916-b6ebfb6cb1bca9f61099b0180a733f67481efcf0310ee9645ce497f583744e553</citedby><cites>FETCH-LOGICAL-c4916-b6ebfb6cb1bca9f61099b0180a733f67481efcf0310ee9645ce497f583744e553</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1365-313X.2011.04546.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1365-313X.2011.04546.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,782,786,1419,1435,27933,27934,45583,45584,46418,46842</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24195324$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21332848$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lenz, Heike D.</creatorcontrib><creatorcontrib>Haller, Eva</creatorcontrib><creatorcontrib>Melzer, Eric</creatorcontrib><creatorcontrib>Kober, Karina</creatorcontrib><creatorcontrib>Wurster, Karl</creatorcontrib><creatorcontrib>Stahl, Mark</creatorcontrib><creatorcontrib>Bassham, Diane C.</creatorcontrib><creatorcontrib>Vierstra, Richard D.</creatorcontrib><creatorcontrib>Parker, Jane E.</creatorcontrib><creatorcontrib>Bautor, Jaqueline</creatorcontrib><creatorcontrib>Molina, Antonio</creatorcontrib><creatorcontrib>Escudero, Viviana</creatorcontrib><creatorcontrib>Shindo, Takayuki</creatorcontrib><creatorcontrib>van der Hoorn, Renier A. L.</creatorcontrib><creatorcontrib>Gust, Andrea A.</creatorcontrib><creatorcontrib>Nürnberger, Thorsten</creatorcontrib><title>Autophagy differentially controls plant basal immunity to biotrophic and necrotrophic pathogens</title><title>The Plant journal : for cell and molecular biology</title><addtitle>Plant J</addtitle><description>Summary In plants, autophagy has been assigned ‘pro‐death’ and ‘pro‐survival’ roles in controlling programmed cell death associated with microbial effector‐triggered immunity. The role of autophagy in basal immunity to virulent pathogens has not been addressed systematically, however. Using several autophagy‐deficient (atg) genotypes, we determined the function of autophagy in basal plant immunity. Arabidopsis mutants lacking ATG5, ATG10 and ATG18a develop spreading necrosis upon infection with the necrotrophic fungal pathogen, Alternaria brassicicola, which is accompanied by the production of reactive oxygen intermediates and by enhanced hyphal growth. Likewise, treatment with the fungal toxin fumonisin B1 causes spreading lesion formation in atg mutant genotypes. We suggest that autophagy constitutes a ‘pro‐survival’ mechanism that controls the containment of host tissue‐destructive microbial infections. In contrast, atg plants do not show spreading necrosis, but exhibit marked resistance against the virulent biotrophic phytopathogen, Pseudomonas syringae pv. tomato. Inducible defenses associated with basal plant immunity, such as callose production or mitogen‐activated protein kinase activation, were unaltered in atg genotypes. However, phytohormone analysis revealed that salicylic acid (SA) levels in non‐infected and bacteria‐infected atg plants were slightly higher than those in Col‐0 plants, and were accompanied by elevated SA‐dependent gene expression and camalexin production. This suggests that previously undetected moderate infection‐induced rises in SA result in measurably enhanced bacterial resistance, and that autophagy negatively controls SA‐dependent defenses and basal immunity to bacterial infection. We infer that the way in which autophagy contributes to plant immunity to different pathogens is mechanistically diverse, and thus resembles the complex role of this process in animal innate immunity.</description><subject>Alternaria - immunology</subject><subject>Alternaria - pathogenicity</subject><subject>Arabidopsis</subject><subject>Arabidopsis - genetics</subject><subject>Arabidopsis - immunology</subject><subject>Arabidopsis - microbiology</subject><subject>Arabidopsis Proteins - metabolism</subject><subject>ATG gene</subject><subject>Autophagy</subject><subject>Autophagy - genetics</subject><subject>Autophagy - immunology</subject><subject>Autophagy-Related Protein 5</subject><subject>Autophagy-Related Proteins</subject><subject>basal immunity</subject><subject>Biological and medical sciences</subject><subject>Ethylenes - metabolism</subject><subject>Fumonisins - metabolism</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene Expression Regulation, Plant</subject><subject>Genetic Complementation Test</subject><subject>Genetic Loci</subject><subject>Genetic Pleiotropy</subject><subject>Immunity, Innate</subject><subject>Indoles - metabolism</subject><subject>Pathogens</subject><subject>Phosphoric Monoester Hydrolases - metabolism</subject><subject>Plant Growth Regulators - metabolism</subject><subject>Plant Leaves - metabolism</subject><subject>Plant Leaves - microbiology</subject><subject>Plant physiology and development</subject><subject>Plant sciences</subject><subject>Pseudomonas syringae - immunology</subject><subject>Pseudomonas syringae - pathogenicity</subject><subject>salicylic acid</subject><subject>Salicylic Acid - metabolism</subject><subject>Thiazoles - metabolism</subject><issn>0960-7412</issn><issn>1365-313X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkE2P0zAQhi20iO0u_AVkIe0xwRN_JDlwWK2ABa0EhyJxs2zXbl2lTrATbfPvcWgpV3yxNX7mndGDEAZSQj7v9yVQwQsK9GdZEYCSMM5EeXyBVpePK7QirSBFzaC6Rjcp7QmBmgr2Cl1XQGnVsGaF5P009sNObWe88c7ZaMPoVdfN2PRhjH2X8NCpMGKtkuqwPxym4McZjz3Wvs_AsPMGq7DBwZp4KQxq3PVbG9Jr9NKpLtk35_sW_fj0cf3wWDx9-_zl4f6pMKwFUWhhtdPCaNBGtU4AaVtNoCGqptSJmjVgnXGEArG2FYwby9ra8YbWjFnO6S16d8odYv9rsmmU-36KIY-UjWgqzrOhDDUnKG-aUrRODtEfVJwlELmIlXu5-JOLP7mIlX_EymNufXvOn_TBbi6Nf01m4O4MqGRU56IKxqd_HIOW04pl7sOJe_adnf97Abn-_nV50d-PjZW4</recordid><startdate>201106</startdate><enddate>201106</enddate><creator>Lenz, Heike D.</creator><creator>Haller, Eva</creator><creator>Melzer, Eric</creator><creator>Kober, Karina</creator><creator>Wurster, Karl</creator><creator>Stahl, Mark</creator><creator>Bassham, Diane C.</creator><creator>Vierstra, Richard D.</creator><creator>Parker, Jane E.</creator><creator>Bautor, Jaqueline</creator><creator>Molina, Antonio</creator><creator>Escudero, Viviana</creator><creator>Shindo, Takayuki</creator><creator>van der Hoorn, Renier A. L.</creator><creator>Gust, Andrea A.</creator><creator>Nürnberger, Thorsten</creator><general>Blackwell Publishing Ltd</general><general>Blackwell</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7QP</scope><scope>7QR</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope></search><sort><creationdate>201106</creationdate><title>Autophagy differentially controls plant basal immunity to biotrophic and necrotrophic pathogens</title><author>Lenz, Heike D. ; Haller, Eva ; Melzer, Eric ; Kober, Karina ; Wurster, Karl ; Stahl, Mark ; Bassham, Diane C. ; Vierstra, Richard D. ; Parker, Jane E. ; Bautor, Jaqueline ; Molina, Antonio ; Escudero, Viviana ; Shindo, Takayuki ; van der Hoorn, Renier A. L. ; Gust, Andrea A. ; Nürnberger, Thorsten</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4916-b6ebfb6cb1bca9f61099b0180a733f67481efcf0310ee9645ce497f583744e553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Alternaria - immunology</topic><topic>Alternaria - pathogenicity</topic><topic>Arabidopsis</topic><topic>Arabidopsis - genetics</topic><topic>Arabidopsis - immunology</topic><topic>Arabidopsis - microbiology</topic><topic>Arabidopsis Proteins - metabolism</topic><topic>ATG gene</topic><topic>Autophagy</topic><topic>Autophagy - genetics</topic><topic>Autophagy - immunology</topic><topic>Autophagy-Related Protein 5</topic><topic>Autophagy-Related Proteins</topic><topic>basal immunity</topic><topic>Biological and medical sciences</topic><topic>Ethylenes - metabolism</topic><topic>Fumonisins - metabolism</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene Expression Regulation, Plant</topic><topic>Genetic Complementation Test</topic><topic>Genetic Loci</topic><topic>Genetic Pleiotropy</topic><topic>Immunity, Innate</topic><topic>Indoles - metabolism</topic><topic>Pathogens</topic><topic>Phosphoric Monoester Hydrolases - metabolism</topic><topic>Plant Growth Regulators - metabolism</topic><topic>Plant Leaves - metabolism</topic><topic>Plant Leaves - microbiology</topic><topic>Plant physiology and development</topic><topic>Plant sciences</topic><topic>Pseudomonas syringae - immunology</topic><topic>Pseudomonas syringae - pathogenicity</topic><topic>salicylic acid</topic><topic>Salicylic Acid - metabolism</topic><topic>Thiazoles - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lenz, Heike D.</creatorcontrib><creatorcontrib>Haller, Eva</creatorcontrib><creatorcontrib>Melzer, Eric</creatorcontrib><creatorcontrib>Kober, Karina</creatorcontrib><creatorcontrib>Wurster, Karl</creatorcontrib><creatorcontrib>Stahl, Mark</creatorcontrib><creatorcontrib>Bassham, Diane C.</creatorcontrib><creatorcontrib>Vierstra, Richard D.</creatorcontrib><creatorcontrib>Parker, Jane E.</creatorcontrib><creatorcontrib>Bautor, Jaqueline</creatorcontrib><creatorcontrib>Molina, Antonio</creatorcontrib><creatorcontrib>Escudero, Viviana</creatorcontrib><creatorcontrib>Shindo, Takayuki</creatorcontrib><creatorcontrib>van der Hoorn, Renier A. L.</creatorcontrib><creatorcontrib>Gust, Andrea A.</creatorcontrib><creatorcontrib>Nürnberger, Thorsten</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>The Plant journal : for cell and molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lenz, Heike D.</au><au>Haller, Eva</au><au>Melzer, Eric</au><au>Kober, Karina</au><au>Wurster, Karl</au><au>Stahl, Mark</au><au>Bassham, Diane C.</au><au>Vierstra, Richard D.</au><au>Parker, Jane E.</au><au>Bautor, Jaqueline</au><au>Molina, Antonio</au><au>Escudero, Viviana</au><au>Shindo, Takayuki</au><au>van der Hoorn, Renier A. L.</au><au>Gust, Andrea A.</au><au>Nürnberger, Thorsten</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Autophagy differentially controls plant basal immunity to biotrophic and necrotrophic pathogens</atitle><jtitle>The Plant journal : for cell and molecular biology</jtitle><addtitle>Plant J</addtitle><date>2011-06</date><risdate>2011</risdate><volume>66</volume><issue>5</issue><spage>818</spage><epage>830</epage><pages>818-830</pages><issn>0960-7412</issn><eissn>1365-313X</eissn><abstract>Summary In plants, autophagy has been assigned ‘pro‐death’ and ‘pro‐survival’ roles in controlling programmed cell death associated with microbial effector‐triggered immunity. The role of autophagy in basal immunity to virulent pathogens has not been addressed systematically, however. Using several autophagy‐deficient (atg) genotypes, we determined the function of autophagy in basal plant immunity. Arabidopsis mutants lacking ATG5, ATG10 and ATG18a develop spreading necrosis upon infection with the necrotrophic fungal pathogen, Alternaria brassicicola, which is accompanied by the production of reactive oxygen intermediates and by enhanced hyphal growth. Likewise, treatment with the fungal toxin fumonisin B1 causes spreading lesion formation in atg mutant genotypes. We suggest that autophagy constitutes a ‘pro‐survival’ mechanism that controls the containment of host tissue‐destructive microbial infections. In contrast, atg plants do not show spreading necrosis, but exhibit marked resistance against the virulent biotrophic phytopathogen, Pseudomonas syringae pv. tomato. Inducible defenses associated with basal plant immunity, such as callose production or mitogen‐activated protein kinase activation, were unaltered in atg genotypes. However, phytohormone analysis revealed that salicylic acid (SA) levels in non‐infected and bacteria‐infected atg plants were slightly higher than those in Col‐0 plants, and were accompanied by elevated SA‐dependent gene expression and camalexin production. This suggests that previously undetected moderate infection‐induced rises in SA result in measurably enhanced bacterial resistance, and that autophagy negatively controls SA‐dependent defenses and basal immunity to bacterial infection. We infer that the way in which autophagy contributes to plant immunity to different pathogens is mechanistically diverse, and thus resembles the complex role of this process in animal innate immunity.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><pmid>21332848</pmid><doi>10.1111/j.1365-313X.2011.04546.x</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0960-7412
ispartof The Plant journal : for cell and molecular biology, 2011-06, Vol.66 (5), p.818-830
issn 0960-7412
1365-313X
language eng
recordid cdi_proquest_journals_868255045
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Access via Wiley Online Library; IngentaConnect Free/Open Access Journals; Wiley Online Library (Open Access Collection)
subjects Alternaria - immunology
Alternaria - pathogenicity
Arabidopsis
Arabidopsis - genetics
Arabidopsis - immunology
Arabidopsis - microbiology
Arabidopsis Proteins - metabolism
ATG gene
Autophagy
Autophagy - genetics
Autophagy - immunology
Autophagy-Related Protein 5
Autophagy-Related Proteins
basal immunity
Biological and medical sciences
Ethylenes - metabolism
Fumonisins - metabolism
Fundamental and applied biological sciences. Psychology
Gene Expression Regulation, Plant
Genetic Complementation Test
Genetic Loci
Genetic Pleiotropy
Immunity, Innate
Indoles - metabolism
Pathogens
Phosphoric Monoester Hydrolases - metabolism
Plant Growth Regulators - metabolism
Plant Leaves - metabolism
Plant Leaves - microbiology
Plant physiology and development
Plant sciences
Pseudomonas syringae - immunology
Pseudomonas syringae - pathogenicity
salicylic acid
Salicylic Acid - metabolism
Thiazoles - metabolism
title Autophagy differentially controls plant basal immunity to biotrophic and necrotrophic pathogens
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-02T16%3A20%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Autophagy%20differentially%20controls%20plant%20basal%20immunity%20to%20biotrophic%20and%20necrotrophic%20pathogens&rft.jtitle=The%20Plant%20journal%20:%20for%20cell%20and%20molecular%20biology&rft.au=Lenz,%20Heike%20D.&rft.date=2011-06&rft.volume=66&rft.issue=5&rft.spage=818&rft.epage=830&rft.pages=818-830&rft.issn=0960-7412&rft.eissn=1365-313X&rft_id=info:doi/10.1111/j.1365-313X.2011.04546.x&rft_dat=%3Cproquest_cross%3E2356122411%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=868255045&rft_id=info:pmid/21332848&rfr_iscdi=true