The rational design of nitric oxide selectivity in single-walled carbon nanotube near-infrared fluorescence sensors for biological detection

A major challenge in the synthesis of nanotube or nanowire sensors is to impart selective analyte binding through means other than covalent linkages, which compromise electronic and optical properties. We synthesized a 3,4-diaminophenyl-functionalized dextran (DAP-dex) wrapping for single-walled car...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature chemistry 2009-09, Vol.1 (6), p.473-481
Hauptverfasser: Strano, Michael S, Kim, Jong-Ho, Heller, Daniel A, Jin, Hong, Barone, Paul W, Song, Changsik, Zhang, Jingqing, Trudel, Laura J, Wogan, Gerald N, Tannenbaum, Steven R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A major challenge in the synthesis of nanotube or nanowire sensors is to impart selective analyte binding through means other than covalent linkages, which compromise electronic and optical properties. We synthesized a 3,4-diaminophenyl-functionalized dextran (DAP-dex) wrapping for single-walled carbon nanotubes (SWNTs) that imparts rapid and selective fluorescence detection of nitric oxide (NO), a messenger for biological signalling. The near-infrared (nIR) fluorescence of SWNT DAP-dex is immediately and directly bleached by NO, but not by other reactive nitrogen and oxygen species. This bleaching is reversible and shown to be caused by electron transfer from the top of the valence band of the SWNT to the lowest unoccupied molecular orbital of NO. The resulting optical sensor is capable of real-time and spatially resolved detection of NO produced by stimulating NO synthase in macrophage cells. We also demonstrate the potential of the optical sensor for in vivo detection of NO in a mouse model. Single-walled carbon nanotubes wrapped with a carbohydrate-based polymer bearing diaminophenyl groups can be used to detect nitric oxide (NO) — an important messenger molecule for biological signalling. These polymer–nanotube hybrids are capable of real-time and spatially resolved sensing of NO in living cells, and could ultimately prove useful for in vivo detection.
ISSN:1755-4330
1755-4349
DOI:10.1038/nchem.332