Tour of bordered Floer theory
Heegaard Floer theory is a kind of topological quantum field theory (TQFT), assigning graded groups to closed, connected, oriented 3-manifolds and group homomorphisms to smooth, oriented four-dimensional cobordisms. Bordered Heegaard Floer homology is an extension of Heegaard Floer homology to 3-man...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2011-05, Vol.108 (20), p.8085-8092 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8092 |
---|---|
container_issue | 20 |
container_start_page | 8085 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 108 |
creator | Lipshitz, Robert Ozsváth, Peter S Thurston, Dylan P |
description | Heegaard Floer theory is a kind of topological quantum field theory (TQFT), assigning graded groups to closed, connected, oriented 3-manifolds and group homomorphisms to smooth, oriented four-dimensional cobordisms. Bordered Heegaard Floer homology is an extension of Heegaard Floer homology to 3-manifolds with boundary, with extended-TQFT-type gluing properties. In this survey, we explain the formal structure and construction of bordered Floer homology and sketch how it can be used to compute some aspects of Heegaard Floer theory. |
doi_str_mv | 10.1073/pnas.1019060108 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_868072811</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>25830009</jstor_id><sourcerecordid>25830009</sourcerecordid><originalsourceid>FETCH-LOGICAL-c555t-feeb019f4111d687368fcfc7e937699fecc58fa4105f40c49065e0b1b43110ef3</originalsourceid><addsrcrecordid>eNpdkU1vEzEQhi0EomnhzKkQceG0dMZef12QUEUBqRIH2rPldcbtRpt1sDdI_fd4lbQBTrbkZx6985qxNwgfEbS42I6-1BtaUIBgnrEFgsVGtRaeswUA141peXvCTktZA4CVBl6yE46SozZmwc5v0i4vU1x2Ka8o02p5NSTKy-meUn54xV5EPxR6fTjP2O3Vl5vLb831j6_fLz9fN0FKOTWRqKsZYouIK2W0UCaGGDRZoZW1kUKQJvoWQcYWQg2nJEGHXSsQgaI4Y5_23u2u29Aq0DhlP7ht7jc-P7jke_fvy9jfu7v02wmsO1lbBR8Ogpx-7ahMbtOXQMPgR0q74ozSmqMSWMn3_5Hr2sBYt6uQAc0NztDFHgo5lZIpPkVBcHPxbi7eHYuvE2__3uCJf2y6Au8OwDx51BnHwRkwshLne2JdppSPBmnE_HNHQ_TJ-bvcF3f7kwMqqDE4KBR_ADsPmiI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>868072811</pqid></control><display><type>article</type><title>Tour of bordered Floer theory</title><source>Jstor Complete Legacy</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Lipshitz, Robert ; Ozsváth, Peter S ; Thurston, Dylan P</creator><creatorcontrib>Lipshitz, Robert ; Ozsváth, Peter S ; Thurston, Dylan P</creatorcontrib><description>Heegaard Floer theory is a kind of topological quantum field theory (TQFT), assigning graded groups to closed, connected, oriented 3-manifolds and group homomorphisms to smooth, oriented four-dimensional cobordisms. Bordered Heegaard Floer homology is an extension of Heegaard Floer homology to 3-manifolds with boundary, with extended-TQFT-type gluing properties. In this survey, we explain the formal structure and construction of bordered Floer homology and sketch how it can be used to compute some aspects of Heegaard Floer theory.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1019060108</identifier><identifier>PMID: 21521788</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Algebra ; Curves ; Homeomorphism ; LOW DIMENSIONAL GEOMETRY AND TOPOLOGY SPECIAL FEATURE ; Mathematical surfaces ; Physical Sciences ; Polynomials ; quantum dots ; Quantum field theory ; quantum mechanics ; Subalgebras ; surveys ; Tensors ; Topological manifolds ; Topology</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2011-05, Vol.108 (20), p.8085-8092</ispartof><rights>Copyright National Academy of Sciences May 17, 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c555t-feeb019f4111d687368fcfc7e937699fecc58fa4105f40c49065e0b1b43110ef3</citedby><cites>FETCH-LOGICAL-c555t-feeb019f4111d687368fcfc7e937699fecc58fa4105f40c49065e0b1b43110ef3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/108/20.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/25830009$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/25830009$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21521788$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lipshitz, Robert</creatorcontrib><creatorcontrib>Ozsváth, Peter S</creatorcontrib><creatorcontrib>Thurston, Dylan P</creatorcontrib><title>Tour of bordered Floer theory</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Heegaard Floer theory is a kind of topological quantum field theory (TQFT), assigning graded groups to closed, connected, oriented 3-manifolds and group homomorphisms to smooth, oriented four-dimensional cobordisms. Bordered Heegaard Floer homology is an extension of Heegaard Floer homology to 3-manifolds with boundary, with extended-TQFT-type gluing properties. In this survey, we explain the formal structure and construction of bordered Floer homology and sketch how it can be used to compute some aspects of Heegaard Floer theory.</description><subject>Algebra</subject><subject>Curves</subject><subject>Homeomorphism</subject><subject>LOW DIMENSIONAL GEOMETRY AND TOPOLOGY SPECIAL FEATURE</subject><subject>Mathematical surfaces</subject><subject>Physical Sciences</subject><subject>Polynomials</subject><subject>quantum dots</subject><subject>Quantum field theory</subject><subject>quantum mechanics</subject><subject>Subalgebras</subject><subject>surveys</subject><subject>Tensors</subject><subject>Topological manifolds</subject><subject>Topology</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNpdkU1vEzEQhi0EomnhzKkQceG0dMZef12QUEUBqRIH2rPldcbtRpt1sDdI_fd4lbQBTrbkZx6985qxNwgfEbS42I6-1BtaUIBgnrEFgsVGtRaeswUA141peXvCTktZA4CVBl6yE46SozZmwc5v0i4vU1x2Ka8o02p5NSTKy-meUn54xV5EPxR6fTjP2O3Vl5vLb831j6_fLz9fN0FKOTWRqKsZYouIK2W0UCaGGDRZoZW1kUKQJvoWQcYWQg2nJEGHXSsQgaI4Y5_23u2u29Aq0DhlP7ht7jc-P7jke_fvy9jfu7v02wmsO1lbBR8Ogpx-7ahMbtOXQMPgR0q74ozSmqMSWMn3_5Hr2sBYt6uQAc0NztDFHgo5lZIpPkVBcHPxbi7eHYuvE2__3uCJf2y6Au8OwDx51BnHwRkwshLne2JdppSPBmnE_HNHQ_TJ-bvcF3f7kwMqqDE4KBR_ADsPmiI</recordid><startdate>20110517</startdate><enddate>20110517</enddate><creator>Lipshitz, Robert</creator><creator>Ozsváth, Peter S</creator><creator>Thurston, Dylan P</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20110517</creationdate><title>Tour of bordered Floer theory</title><author>Lipshitz, Robert ; Ozsváth, Peter S ; Thurston, Dylan P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c555t-feeb019f4111d687368fcfc7e937699fecc58fa4105f40c49065e0b1b43110ef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Algebra</topic><topic>Curves</topic><topic>Homeomorphism</topic><topic>LOW DIMENSIONAL GEOMETRY AND TOPOLOGY SPECIAL FEATURE</topic><topic>Mathematical surfaces</topic><topic>Physical Sciences</topic><topic>Polynomials</topic><topic>quantum dots</topic><topic>Quantum field theory</topic><topic>quantum mechanics</topic><topic>Subalgebras</topic><topic>surveys</topic><topic>Tensors</topic><topic>Topological manifolds</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lipshitz, Robert</creatorcontrib><creatorcontrib>Ozsváth, Peter S</creatorcontrib><creatorcontrib>Thurston, Dylan P</creatorcontrib><collection>AGRIS</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lipshitz, Robert</au><au>Ozsváth, Peter S</au><au>Thurston, Dylan P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tour of bordered Floer theory</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2011-05-17</date><risdate>2011</risdate><volume>108</volume><issue>20</issue><spage>8085</spage><epage>8092</epage><pages>8085-8092</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Heegaard Floer theory is a kind of topological quantum field theory (TQFT), assigning graded groups to closed, connected, oriented 3-manifolds and group homomorphisms to smooth, oriented four-dimensional cobordisms. Bordered Heegaard Floer homology is an extension of Heegaard Floer homology to 3-manifolds with boundary, with extended-TQFT-type gluing properties. In this survey, we explain the formal structure and construction of bordered Floer homology and sketch how it can be used to compute some aspects of Heegaard Floer theory.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>21521788</pmid><doi>10.1073/pnas.1019060108</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2011-05, Vol.108 (20), p.8085-8092 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_proquest_journals_868072811 |
source | Jstor Complete Legacy; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Algebra Curves Homeomorphism LOW DIMENSIONAL GEOMETRY AND TOPOLOGY SPECIAL FEATURE Mathematical surfaces Physical Sciences Polynomials quantum dots Quantum field theory quantum mechanics Subalgebras surveys Tensors Topological manifolds Topology |
title | Tour of bordered Floer theory |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T00%3A45%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tour%20of%20bordered%20Floer%20theory&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Lipshitz,%20Robert&rft.date=2011-05-17&rft.volume=108&rft.issue=20&rft.spage=8085&rft.epage=8092&rft.pages=8085-8092&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1019060108&rft_dat=%3Cjstor_proqu%3E25830009%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=868072811&rft_id=info:pmid/21521788&rft_jstor_id=25830009&rfr_iscdi=true |