Tour of bordered Floer theory

Heegaard Floer theory is a kind of topological quantum field theory (TQFT), assigning graded groups to closed, connected, oriented 3-manifolds and group homomorphisms to smooth, oriented four-dimensional cobordisms. Bordered Heegaard Floer homology is an extension of Heegaard Floer homology to 3-man...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2011-05, Vol.108 (20), p.8085-8092
Hauptverfasser: Lipshitz, Robert, Ozsváth, Peter S, Thurston, Dylan P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8092
container_issue 20
container_start_page 8085
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 108
creator Lipshitz, Robert
Ozsváth, Peter S
Thurston, Dylan P
description Heegaard Floer theory is a kind of topological quantum field theory (TQFT), assigning graded groups to closed, connected, oriented 3-manifolds and group homomorphisms to smooth, oriented four-dimensional cobordisms. Bordered Heegaard Floer homology is an extension of Heegaard Floer homology to 3-manifolds with boundary, with extended-TQFT-type gluing properties. In this survey, we explain the formal structure and construction of bordered Floer homology and sketch how it can be used to compute some aspects of Heegaard Floer theory.
doi_str_mv 10.1073/pnas.1019060108
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_868072811</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>25830009</jstor_id><sourcerecordid>25830009</sourcerecordid><originalsourceid>FETCH-LOGICAL-c555t-feeb019f4111d687368fcfc7e937699fecc58fa4105f40c49065e0b1b43110ef3</originalsourceid><addsrcrecordid>eNpdkU1vEzEQhi0EomnhzKkQceG0dMZef12QUEUBqRIH2rPldcbtRpt1sDdI_fd4lbQBTrbkZx6985qxNwgfEbS42I6-1BtaUIBgnrEFgsVGtRaeswUA141peXvCTktZA4CVBl6yE46SozZmwc5v0i4vU1x2Ka8o02p5NSTKy-meUn54xV5EPxR6fTjP2O3Vl5vLb831j6_fLz9fN0FKOTWRqKsZYouIK2W0UCaGGDRZoZW1kUKQJvoWQcYWQg2nJEGHXSsQgaI4Y5_23u2u29Aq0DhlP7ht7jc-P7jke_fvy9jfu7v02wmsO1lbBR8Ogpx-7ahMbtOXQMPgR0q74ozSmqMSWMn3_5Hr2sBYt6uQAc0NztDFHgo5lZIpPkVBcHPxbi7eHYuvE2__3uCJf2y6Au8OwDx51BnHwRkwshLne2JdppSPBmnE_HNHQ_TJ-bvcF3f7kwMqqDE4KBR_ADsPmiI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>868072811</pqid></control><display><type>article</type><title>Tour of bordered Floer theory</title><source>Jstor Complete Legacy</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Lipshitz, Robert ; Ozsváth, Peter S ; Thurston, Dylan P</creator><creatorcontrib>Lipshitz, Robert ; Ozsváth, Peter S ; Thurston, Dylan P</creatorcontrib><description>Heegaard Floer theory is a kind of topological quantum field theory (TQFT), assigning graded groups to closed, connected, oriented 3-manifolds and group homomorphisms to smooth, oriented four-dimensional cobordisms. Bordered Heegaard Floer homology is an extension of Heegaard Floer homology to 3-manifolds with boundary, with extended-TQFT-type gluing properties. In this survey, we explain the formal structure and construction of bordered Floer homology and sketch how it can be used to compute some aspects of Heegaard Floer theory.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1019060108</identifier><identifier>PMID: 21521788</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Algebra ; Curves ; Homeomorphism ; LOW DIMENSIONAL GEOMETRY AND TOPOLOGY SPECIAL FEATURE ; Mathematical surfaces ; Physical Sciences ; Polynomials ; quantum dots ; Quantum field theory ; quantum mechanics ; Subalgebras ; surveys ; Tensors ; Topological manifolds ; Topology</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2011-05, Vol.108 (20), p.8085-8092</ispartof><rights>Copyright National Academy of Sciences May 17, 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c555t-feeb019f4111d687368fcfc7e937699fecc58fa4105f40c49065e0b1b43110ef3</citedby><cites>FETCH-LOGICAL-c555t-feeb019f4111d687368fcfc7e937699fecc58fa4105f40c49065e0b1b43110ef3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/108/20.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/25830009$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/25830009$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21521788$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lipshitz, Robert</creatorcontrib><creatorcontrib>Ozsváth, Peter S</creatorcontrib><creatorcontrib>Thurston, Dylan P</creatorcontrib><title>Tour of bordered Floer theory</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Heegaard Floer theory is a kind of topological quantum field theory (TQFT), assigning graded groups to closed, connected, oriented 3-manifolds and group homomorphisms to smooth, oriented four-dimensional cobordisms. Bordered Heegaard Floer homology is an extension of Heegaard Floer homology to 3-manifolds with boundary, with extended-TQFT-type gluing properties. In this survey, we explain the formal structure and construction of bordered Floer homology and sketch how it can be used to compute some aspects of Heegaard Floer theory.</description><subject>Algebra</subject><subject>Curves</subject><subject>Homeomorphism</subject><subject>LOW DIMENSIONAL GEOMETRY AND TOPOLOGY SPECIAL FEATURE</subject><subject>Mathematical surfaces</subject><subject>Physical Sciences</subject><subject>Polynomials</subject><subject>quantum dots</subject><subject>Quantum field theory</subject><subject>quantum mechanics</subject><subject>Subalgebras</subject><subject>surveys</subject><subject>Tensors</subject><subject>Topological manifolds</subject><subject>Topology</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNpdkU1vEzEQhi0EomnhzKkQceG0dMZef12QUEUBqRIH2rPldcbtRpt1sDdI_fd4lbQBTrbkZx6985qxNwgfEbS42I6-1BtaUIBgnrEFgsVGtRaeswUA141peXvCTktZA4CVBl6yE46SozZmwc5v0i4vU1x2Ka8o02p5NSTKy-meUn54xV5EPxR6fTjP2O3Vl5vLb831j6_fLz9fN0FKOTWRqKsZYouIK2W0UCaGGDRZoZW1kUKQJvoWQcYWQg2nJEGHXSsQgaI4Y5_23u2u29Aq0DhlP7ht7jc-P7jke_fvy9jfu7v02wmsO1lbBR8Ogpx-7ahMbtOXQMPgR0q74ozSmqMSWMn3_5Hr2sBYt6uQAc0NztDFHgo5lZIpPkVBcHPxbi7eHYuvE2__3uCJf2y6Au8OwDx51BnHwRkwshLne2JdppSPBmnE_HNHQ_TJ-bvcF3f7kwMqqDE4KBR_ADsPmiI</recordid><startdate>20110517</startdate><enddate>20110517</enddate><creator>Lipshitz, Robert</creator><creator>Ozsváth, Peter S</creator><creator>Thurston, Dylan P</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20110517</creationdate><title>Tour of bordered Floer theory</title><author>Lipshitz, Robert ; Ozsváth, Peter S ; Thurston, Dylan P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c555t-feeb019f4111d687368fcfc7e937699fecc58fa4105f40c49065e0b1b43110ef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Algebra</topic><topic>Curves</topic><topic>Homeomorphism</topic><topic>LOW DIMENSIONAL GEOMETRY AND TOPOLOGY SPECIAL FEATURE</topic><topic>Mathematical surfaces</topic><topic>Physical Sciences</topic><topic>Polynomials</topic><topic>quantum dots</topic><topic>Quantum field theory</topic><topic>quantum mechanics</topic><topic>Subalgebras</topic><topic>surveys</topic><topic>Tensors</topic><topic>Topological manifolds</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lipshitz, Robert</creatorcontrib><creatorcontrib>Ozsváth, Peter S</creatorcontrib><creatorcontrib>Thurston, Dylan P</creatorcontrib><collection>AGRIS</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lipshitz, Robert</au><au>Ozsváth, Peter S</au><au>Thurston, Dylan P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tour of bordered Floer theory</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2011-05-17</date><risdate>2011</risdate><volume>108</volume><issue>20</issue><spage>8085</spage><epage>8092</epage><pages>8085-8092</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Heegaard Floer theory is a kind of topological quantum field theory (TQFT), assigning graded groups to closed, connected, oriented 3-manifolds and group homomorphisms to smooth, oriented four-dimensional cobordisms. Bordered Heegaard Floer homology is an extension of Heegaard Floer homology to 3-manifolds with boundary, with extended-TQFT-type gluing properties. In this survey, we explain the formal structure and construction of bordered Floer homology and sketch how it can be used to compute some aspects of Heegaard Floer theory.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>21521788</pmid><doi>10.1073/pnas.1019060108</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2011-05, Vol.108 (20), p.8085-8092
issn 0027-8424
1091-6490
language eng
recordid cdi_proquest_journals_868072811
source Jstor Complete Legacy; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Algebra
Curves
Homeomorphism
LOW DIMENSIONAL GEOMETRY AND TOPOLOGY SPECIAL FEATURE
Mathematical surfaces
Physical Sciences
Polynomials
quantum dots
Quantum field theory
quantum mechanics
Subalgebras
surveys
Tensors
Topological manifolds
Topology
title Tour of bordered Floer theory
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T00%3A45%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tour%20of%20bordered%20Floer%20theory&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Lipshitz,%20Robert&rft.date=2011-05-17&rft.volume=108&rft.issue=20&rft.spage=8085&rft.epage=8092&rft.pages=8085-8092&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1019060108&rft_dat=%3Cjstor_proqu%3E25830009%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=868072811&rft_id=info:pmid/21521788&rft_jstor_id=25830009&rfr_iscdi=true