On Pole Placement via Eigenstructure Assignment Approach

This note comes back to the hard problem of pole placement by static output feedback: let a triplet of matrices {A;B;C} be given with n state variables, m inputs and p ouputs, find a matrix K such that the spectrum of A+BKC equals a specified set. When mp>m+p, a simple noniterative technique base...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on automatic control 2006-09, Vol.51 (9), p.1554-1558
Hauptverfasser: Bachelier, O., Bosche, J., Mehdi, D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1558
container_issue 9
container_start_page 1554
container_title IEEE transactions on automatic control
container_volume 51
creator Bachelier, O.
Bosche, J.
Mehdi, D.
description This note comes back to the hard problem of pole placement by static output feedback: let a triplet of matrices {A;B;C} be given with n state variables, m inputs and p ouputs, find a matrix K such that the spectrum of A+BKC equals a specified set. When mp>m+p, a simple noniterative technique based upon the notion of eigenstructure that, in most cases, assigns m+p roots is proposed. It, therefore, enables the designer to assign the whole of the desired spectrum when m+p=n
doi_str_mv 10.1109/TAC.2006.880809
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_867097015</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1696001</ieee_id><sourcerecordid>1671290506</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-1b9d86adbe3e4de2c7578f6d9e9ed0b8ba285c91c80b81acef8a76b6137d1dd73</originalsourceid><addsrcrecordid>eNpdkUFr3EAMhYfSQLdJzjn0YgqF9uCN5FnPaI5mSZvAQnJIz8N4LCcOXns7Ywfy7ztbhwZyEpI-iacnIS4Q1ohgLu-r7boAUGsiIDAfxArLkvKiLORHsQJAyk1B6pP4HONTStVmgytBt0N2N_ac3fXO856HKXvuXHbVPfAQpzD7aQ6cVTF2D8O_bnU4hNH5xzNx0ro-8vlrPBW_f17db6_z3e2vm221y72kcsqxNg0p19QsedNw4XWpqVWNYcMN1FS7gkpv0FNKMEloyWlVK5S6wabR8lT8WPY-ut4eQrd34cWOrrPX1c4eayALLUmqZ0zs94VNEv_MHCe776LnvncDj3O0qDQWBkpQCf36Dn0a5zCkSywpDUYDlgm6XCAfxhgDt_8FINij6TaZbo-m28X0NPHtda2L3vVtcIPv4tsYISDoTeK-LFzHzG9tZVT6jPwLNMeIag</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>867097015</pqid></control><display><type>article</type><title>On Pole Placement via Eigenstructure Assignment Approach</title><source>IEEE Electronic Library (IEL)</source><creator>Bachelier, O. ; Bosche, J. ; Mehdi, D.</creator><creatorcontrib>Bachelier, O. ; Bosche, J. ; Mehdi, D.</creatorcontrib><description>This note comes back to the hard problem of pole placement by static output feedback: let a triplet of matrices {A;B;C} be given with n state variables, m inputs and p ouputs, find a matrix K such that the spectrum of A+BKC equals a specified set. When mp&gt;m+p, a simple noniterative technique based upon the notion of eigenstructure that, in most cases, assigns m+p roots is proposed. It, therefore, enables the designer to assign the whole of the desired spectrum when m+p=n&lt;mp</description><identifier>ISSN: 0018-9286</identifier><identifier>EISSN: 1558-2523</identifier><identifier>DOI: 10.1109/TAC.2006.880809</identifier><identifier>CODEN: IETAA9</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Automatic control ; Computer Science ; Computer science; control theory; systems ; Control system analysis ; Control theory. Systems ; Eigenstructure ; Equations ; Exact sciences and technology ; Kimura's condition ; Linear feedback control systems ; Mathematical analysis ; Matrices ; Matrix methods ; Optimization methods ; Output feedback ; Pole placement ; Polynomials ; Roots ; Service robots ; State feedback ; Sufficient conditions</subject><ispartof>IEEE transactions on automatic control, 2006-09, Vol.51 (9), p.1554-1558</ispartof><rights>2007 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2006</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-1b9d86adbe3e4de2c7578f6d9e9ed0b8ba285c91c80b81acef8a76b6137d1dd73</citedby><cites>FETCH-LOGICAL-c385t-1b9d86adbe3e4de2c7578f6d9e9ed0b8ba285c91c80b81acef8a76b6137d1dd73</cites><orcidid>0000-0002-1655-891X ; 0000-0001-7894-5563 ; 0000-0002-0045-7364</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1696001$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,796,885,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1696001$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18101074$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-03273836$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Bachelier, O.</creatorcontrib><creatorcontrib>Bosche, J.</creatorcontrib><creatorcontrib>Mehdi, D.</creatorcontrib><title>On Pole Placement via Eigenstructure Assignment Approach</title><title>IEEE transactions on automatic control</title><addtitle>TAC</addtitle><description>This note comes back to the hard problem of pole placement by static output feedback: let a triplet of matrices {A;B;C} be given with n state variables, m inputs and p ouputs, find a matrix K such that the spectrum of A+BKC equals a specified set. When mp&gt;m+p, a simple noniterative technique based upon the notion of eigenstructure that, in most cases, assigns m+p roots is proposed. It, therefore, enables the designer to assign the whole of the desired spectrum when m+p=n&lt;mp</description><subject>Applied sciences</subject><subject>Automatic control</subject><subject>Computer Science</subject><subject>Computer science; control theory; systems</subject><subject>Control system analysis</subject><subject>Control theory. Systems</subject><subject>Eigenstructure</subject><subject>Equations</subject><subject>Exact sciences and technology</subject><subject>Kimura's condition</subject><subject>Linear feedback control systems</subject><subject>Mathematical analysis</subject><subject>Matrices</subject><subject>Matrix methods</subject><subject>Optimization methods</subject><subject>Output feedback</subject><subject>Pole placement</subject><subject>Polynomials</subject><subject>Roots</subject><subject>Service robots</subject><subject>State feedback</subject><subject>Sufficient conditions</subject><issn>0018-9286</issn><issn>1558-2523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkUFr3EAMhYfSQLdJzjn0YgqF9uCN5FnPaI5mSZvAQnJIz8N4LCcOXns7Ywfy7ztbhwZyEpI-iacnIS4Q1ohgLu-r7boAUGsiIDAfxArLkvKiLORHsQJAyk1B6pP4HONTStVmgytBt0N2N_ac3fXO856HKXvuXHbVPfAQpzD7aQ6cVTF2D8O_bnU4hNH5xzNx0ro-8vlrPBW_f17db6_z3e2vm221y72kcsqxNg0p19QsedNw4XWpqVWNYcMN1FS7gkpv0FNKMEloyWlVK5S6wabR8lT8WPY-ut4eQrd34cWOrrPX1c4eayALLUmqZ0zs94VNEv_MHCe776LnvncDj3O0qDQWBkpQCf36Dn0a5zCkSywpDUYDlgm6XCAfxhgDt_8FINij6TaZbo-m28X0NPHtda2L3vVtcIPv4tsYISDoTeK-LFzHzG9tZVT6jPwLNMeIag</recordid><startdate>20060901</startdate><enddate>20060901</enddate><creator>Bachelier, O.</creator><creator>Bosche, J.</creator><creator>Mehdi, D.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-1655-891X</orcidid><orcidid>https://orcid.org/0000-0001-7894-5563</orcidid><orcidid>https://orcid.org/0000-0002-0045-7364</orcidid></search><sort><creationdate>20060901</creationdate><title>On Pole Placement via Eigenstructure Assignment Approach</title><author>Bachelier, O. ; Bosche, J. ; Mehdi, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-1b9d86adbe3e4de2c7578f6d9e9ed0b8ba285c91c80b81acef8a76b6137d1dd73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Applied sciences</topic><topic>Automatic control</topic><topic>Computer Science</topic><topic>Computer science; control theory; systems</topic><topic>Control system analysis</topic><topic>Control theory. Systems</topic><topic>Eigenstructure</topic><topic>Equations</topic><topic>Exact sciences and technology</topic><topic>Kimura's condition</topic><topic>Linear feedback control systems</topic><topic>Mathematical analysis</topic><topic>Matrices</topic><topic>Matrix methods</topic><topic>Optimization methods</topic><topic>Output feedback</topic><topic>Pole placement</topic><topic>Polynomials</topic><topic>Roots</topic><topic>Service robots</topic><topic>State feedback</topic><topic>Sufficient conditions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bachelier, O.</creatorcontrib><creatorcontrib>Bosche, J.</creatorcontrib><creatorcontrib>Mehdi, D.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>IEEE transactions on automatic control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bachelier, O.</au><au>Bosche, J.</au><au>Mehdi, D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On Pole Placement via Eigenstructure Assignment Approach</atitle><jtitle>IEEE transactions on automatic control</jtitle><stitle>TAC</stitle><date>2006-09-01</date><risdate>2006</risdate><volume>51</volume><issue>9</issue><spage>1554</spage><epage>1558</epage><pages>1554-1558</pages><issn>0018-9286</issn><eissn>1558-2523</eissn><coden>IETAA9</coden><abstract>This note comes back to the hard problem of pole placement by static output feedback: let a triplet of matrices {A;B;C} be given with n state variables, m inputs and p ouputs, find a matrix K such that the spectrum of A+BKC equals a specified set. When mp&gt;m+p, a simple noniterative technique based upon the notion of eigenstructure that, in most cases, assigns m+p roots is proposed. It, therefore, enables the designer to assign the whole of the desired spectrum when m+p=n&lt;mp</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TAC.2006.880809</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-1655-891X</orcidid><orcidid>https://orcid.org/0000-0001-7894-5563</orcidid><orcidid>https://orcid.org/0000-0002-0045-7364</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9286
ispartof IEEE transactions on automatic control, 2006-09, Vol.51 (9), p.1554-1558
issn 0018-9286
1558-2523
language eng
recordid cdi_proquest_journals_867097015
source IEEE Electronic Library (IEL)
subjects Applied sciences
Automatic control
Computer Science
Computer science
control theory
systems
Control system analysis
Control theory. Systems
Eigenstructure
Equations
Exact sciences and technology
Kimura's condition
Linear feedback control systems
Mathematical analysis
Matrices
Matrix methods
Optimization methods
Output feedback
Pole placement
Polynomials
Roots
Service robots
State feedback
Sufficient conditions
title On Pole Placement via Eigenstructure Assignment Approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T12%3A41%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20Pole%20Placement%20via%20Eigenstructure%20Assignment%20Approach&rft.jtitle=IEEE%20transactions%20on%20automatic%20control&rft.au=Bachelier,%20O.&rft.date=2006-09-01&rft.volume=51&rft.issue=9&rft.spage=1554&rft.epage=1558&rft.pages=1554-1558&rft.issn=0018-9286&rft.eissn=1558-2523&rft.coden=IETAA9&rft_id=info:doi/10.1109/TAC.2006.880809&rft_dat=%3Cproquest_RIE%3E1671290506%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=867097015&rft_id=info:pmid/&rft_ieee_id=1696001&rfr_iscdi=true