On Pole Placement via Eigenstructure Assignment Approach
This note comes back to the hard problem of pole placement by static output feedback: let a triplet of matrices {A;B;C} be given with n state variables, m inputs and p ouputs, find a matrix K such that the spectrum of A+BKC equals a specified set. When mp>m+p, a simple noniterative technique base...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on automatic control 2006-09, Vol.51 (9), p.1554-1558 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1558 |
---|---|
container_issue | 9 |
container_start_page | 1554 |
container_title | IEEE transactions on automatic control |
container_volume | 51 |
creator | Bachelier, O. Bosche, J. Mehdi, D. |
description | This note comes back to the hard problem of pole placement by static output feedback: let a triplet of matrices {A;B;C} be given with n state variables, m inputs and p ouputs, find a matrix K such that the spectrum of A+BKC equals a specified set. When mp>m+p, a simple noniterative technique based upon the notion of eigenstructure that, in most cases, assigns m+p roots is proposed. It, therefore, enables the designer to assign the whole of the desired spectrum when m+p=n |
doi_str_mv | 10.1109/TAC.2006.880809 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_867097015</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1696001</ieee_id><sourcerecordid>1671290506</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-1b9d86adbe3e4de2c7578f6d9e9ed0b8ba285c91c80b81acef8a76b6137d1dd73</originalsourceid><addsrcrecordid>eNpdkUFr3EAMhYfSQLdJzjn0YgqF9uCN5FnPaI5mSZvAQnJIz8N4LCcOXns7Ywfy7ztbhwZyEpI-iacnIS4Q1ohgLu-r7boAUGsiIDAfxArLkvKiLORHsQJAyk1B6pP4HONTStVmgytBt0N2N_ac3fXO856HKXvuXHbVPfAQpzD7aQ6cVTF2D8O_bnU4hNH5xzNx0ro-8vlrPBW_f17db6_z3e2vm221y72kcsqxNg0p19QsedNw4XWpqVWNYcMN1FS7gkpv0FNKMEloyWlVK5S6wabR8lT8WPY-ut4eQrd34cWOrrPX1c4eayALLUmqZ0zs94VNEv_MHCe776LnvncDj3O0qDQWBkpQCf36Dn0a5zCkSywpDUYDlgm6XCAfxhgDt_8FINij6TaZbo-m28X0NPHtda2L3vVtcIPv4tsYISDoTeK-LFzHzG9tZVT6jPwLNMeIag</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>867097015</pqid></control><display><type>article</type><title>On Pole Placement via Eigenstructure Assignment Approach</title><source>IEEE Electronic Library (IEL)</source><creator>Bachelier, O. ; Bosche, J. ; Mehdi, D.</creator><creatorcontrib>Bachelier, O. ; Bosche, J. ; Mehdi, D.</creatorcontrib><description>This note comes back to the hard problem of pole placement by static output feedback: let a triplet of matrices {A;B;C} be given with n state variables, m inputs and p ouputs, find a matrix K such that the spectrum of A+BKC equals a specified set. When mp>m+p, a simple noniterative technique based upon the notion of eigenstructure that, in most cases, assigns m+p roots is proposed. It, therefore, enables the designer to assign the whole of the desired spectrum when m+p=n<mp</description><identifier>ISSN: 0018-9286</identifier><identifier>EISSN: 1558-2523</identifier><identifier>DOI: 10.1109/TAC.2006.880809</identifier><identifier>CODEN: IETAA9</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Automatic control ; Computer Science ; Computer science; control theory; systems ; Control system analysis ; Control theory. Systems ; Eigenstructure ; Equations ; Exact sciences and technology ; Kimura's condition ; Linear feedback control systems ; Mathematical analysis ; Matrices ; Matrix methods ; Optimization methods ; Output feedback ; Pole placement ; Polynomials ; Roots ; Service robots ; State feedback ; Sufficient conditions</subject><ispartof>IEEE transactions on automatic control, 2006-09, Vol.51 (9), p.1554-1558</ispartof><rights>2007 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2006</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-1b9d86adbe3e4de2c7578f6d9e9ed0b8ba285c91c80b81acef8a76b6137d1dd73</citedby><cites>FETCH-LOGICAL-c385t-1b9d86adbe3e4de2c7578f6d9e9ed0b8ba285c91c80b81acef8a76b6137d1dd73</cites><orcidid>0000-0002-1655-891X ; 0000-0001-7894-5563 ; 0000-0002-0045-7364</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1696001$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,796,885,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1696001$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18101074$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-03273836$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Bachelier, O.</creatorcontrib><creatorcontrib>Bosche, J.</creatorcontrib><creatorcontrib>Mehdi, D.</creatorcontrib><title>On Pole Placement via Eigenstructure Assignment Approach</title><title>IEEE transactions on automatic control</title><addtitle>TAC</addtitle><description>This note comes back to the hard problem of pole placement by static output feedback: let a triplet of matrices {A;B;C} be given with n state variables, m inputs and p ouputs, find a matrix K such that the spectrum of A+BKC equals a specified set. When mp>m+p, a simple noniterative technique based upon the notion of eigenstructure that, in most cases, assigns m+p roots is proposed. It, therefore, enables the designer to assign the whole of the desired spectrum when m+p=n<mp</description><subject>Applied sciences</subject><subject>Automatic control</subject><subject>Computer Science</subject><subject>Computer science; control theory; systems</subject><subject>Control system analysis</subject><subject>Control theory. Systems</subject><subject>Eigenstructure</subject><subject>Equations</subject><subject>Exact sciences and technology</subject><subject>Kimura's condition</subject><subject>Linear feedback control systems</subject><subject>Mathematical analysis</subject><subject>Matrices</subject><subject>Matrix methods</subject><subject>Optimization methods</subject><subject>Output feedback</subject><subject>Pole placement</subject><subject>Polynomials</subject><subject>Roots</subject><subject>Service robots</subject><subject>State feedback</subject><subject>Sufficient conditions</subject><issn>0018-9286</issn><issn>1558-2523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkUFr3EAMhYfSQLdJzjn0YgqF9uCN5FnPaI5mSZvAQnJIz8N4LCcOXns7Ywfy7ztbhwZyEpI-iacnIS4Q1ohgLu-r7boAUGsiIDAfxArLkvKiLORHsQJAyk1B6pP4HONTStVmgytBt0N2N_ac3fXO856HKXvuXHbVPfAQpzD7aQ6cVTF2D8O_bnU4hNH5xzNx0ro-8vlrPBW_f17db6_z3e2vm221y72kcsqxNg0p19QsedNw4XWpqVWNYcMN1FS7gkpv0FNKMEloyWlVK5S6wabR8lT8WPY-ut4eQrd34cWOrrPX1c4eayALLUmqZ0zs94VNEv_MHCe776LnvncDj3O0qDQWBkpQCf36Dn0a5zCkSywpDUYDlgm6XCAfxhgDt_8FINij6TaZbo-m28X0NPHtda2L3vVtcIPv4tsYISDoTeK-LFzHzG9tZVT6jPwLNMeIag</recordid><startdate>20060901</startdate><enddate>20060901</enddate><creator>Bachelier, O.</creator><creator>Bosche, J.</creator><creator>Mehdi, D.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-1655-891X</orcidid><orcidid>https://orcid.org/0000-0001-7894-5563</orcidid><orcidid>https://orcid.org/0000-0002-0045-7364</orcidid></search><sort><creationdate>20060901</creationdate><title>On Pole Placement via Eigenstructure Assignment Approach</title><author>Bachelier, O. ; Bosche, J. ; Mehdi, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-1b9d86adbe3e4de2c7578f6d9e9ed0b8ba285c91c80b81acef8a76b6137d1dd73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Applied sciences</topic><topic>Automatic control</topic><topic>Computer Science</topic><topic>Computer science; control theory; systems</topic><topic>Control system analysis</topic><topic>Control theory. Systems</topic><topic>Eigenstructure</topic><topic>Equations</topic><topic>Exact sciences and technology</topic><topic>Kimura's condition</topic><topic>Linear feedback control systems</topic><topic>Mathematical analysis</topic><topic>Matrices</topic><topic>Matrix methods</topic><topic>Optimization methods</topic><topic>Output feedback</topic><topic>Pole placement</topic><topic>Polynomials</topic><topic>Roots</topic><topic>Service robots</topic><topic>State feedback</topic><topic>Sufficient conditions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bachelier, O.</creatorcontrib><creatorcontrib>Bosche, J.</creatorcontrib><creatorcontrib>Mehdi, D.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>IEEE transactions on automatic control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bachelier, O.</au><au>Bosche, J.</au><au>Mehdi, D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On Pole Placement via Eigenstructure Assignment Approach</atitle><jtitle>IEEE transactions on automatic control</jtitle><stitle>TAC</stitle><date>2006-09-01</date><risdate>2006</risdate><volume>51</volume><issue>9</issue><spage>1554</spage><epage>1558</epage><pages>1554-1558</pages><issn>0018-9286</issn><eissn>1558-2523</eissn><coden>IETAA9</coden><abstract>This note comes back to the hard problem of pole placement by static output feedback: let a triplet of matrices {A;B;C} be given with n state variables, m inputs and p ouputs, find a matrix K such that the spectrum of A+BKC equals a specified set. When mp>m+p, a simple noniterative technique based upon the notion of eigenstructure that, in most cases, assigns m+p roots is proposed. It, therefore, enables the designer to assign the whole of the desired spectrum when m+p=n<mp</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TAC.2006.880809</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-1655-891X</orcidid><orcidid>https://orcid.org/0000-0001-7894-5563</orcidid><orcidid>https://orcid.org/0000-0002-0045-7364</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9286 |
ispartof | IEEE transactions on automatic control, 2006-09, Vol.51 (9), p.1554-1558 |
issn | 0018-9286 1558-2523 |
language | eng |
recordid | cdi_proquest_journals_867097015 |
source | IEEE Electronic Library (IEL) |
subjects | Applied sciences Automatic control Computer Science Computer science control theory systems Control system analysis Control theory. Systems Eigenstructure Equations Exact sciences and technology Kimura's condition Linear feedback control systems Mathematical analysis Matrices Matrix methods Optimization methods Output feedback Pole placement Polynomials Roots Service robots State feedback Sufficient conditions |
title | On Pole Placement via Eigenstructure Assignment Approach |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T12%3A41%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20Pole%20Placement%20via%20Eigenstructure%20Assignment%20Approach&rft.jtitle=IEEE%20transactions%20on%20automatic%20control&rft.au=Bachelier,%20O.&rft.date=2006-09-01&rft.volume=51&rft.issue=9&rft.spage=1554&rft.epage=1558&rft.pages=1554-1558&rft.issn=0018-9286&rft.eissn=1558-2523&rft.coden=IETAA9&rft_id=info:doi/10.1109/TAC.2006.880809&rft_dat=%3Cproquest_RIE%3E1671290506%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=867097015&rft_id=info:pmid/&rft_ieee_id=1696001&rfr_iscdi=true |