Transition-time optimization for switched-mode dynamical systems
This note considers the problem of determining optimal switching times at which mode transitions should occur in multimodal, hybrid systems. It derives a simple formula for the gradient of the cost functional with respect to the switching times, and uses it in a gradient-descent algorithm. Much of t...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on automatic control 2006-01, Vol.51 (1), p.110-115 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 115 |
---|---|
container_issue | 1 |
container_start_page | 110 |
container_title | IEEE transactions on automatic control |
container_volume | 51 |
creator | Egerstedt, M. Wardi, Y. Axelsson, H. |
description | This note considers the problem of determining optimal switching times at which mode transitions should occur in multimodal, hybrid systems. It derives a simple formula for the gradient of the cost functional with respect to the switching times, and uses it in a gradient-descent algorithm. Much of the analysis is carried out in the setting of optimization problems involving fixed switching-mode sequences, but a possible extension is pointed out for the case where the switching-mode sequence is a part of the variable. Numerical examples testify to the viability of the proposed approach. |
doi_str_mv | 10.1109/TAC.2005.861711 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_867094099</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1576861</ieee_id><sourcerecordid>1671367155</sourcerecordid><originalsourceid>FETCH-LOGICAL-c459t-bb0e2c6e43773e536047463c4b129afa4848fe6199c871ef9cc0c62b7436a8953</originalsourceid><addsrcrecordid>eNqFkctLAzEQxoMoWB9nD14WQfGybSbv3JTiCwpe6jmk6SxGurt1s0XqX2-WCoIHPYQhk998w5ePkDOgYwBqJ_Pb6ZhRKsdGgQbYIyOQ0pRMMr5PRpSCKS0z6pAcpfSWr0oIGJGbeeebFPvYNmUfayzadS7x0w-domq7In3EPrzisqzbJRbLbePrGPyqSNvUY51OyEHlVwlPv-sxebm_m08fy9nzw9P0dlYGIW1fLhYUWVAouNYcJVdUaKF4EAtg1ldeGGEqVGBtMBqwsiHQoNhCC668sZIfk6ud7rpr3zeYelfHFHC18g22m-SYpQaypf9BA1QYLjJ4_ScISgPPRw7LL36hb-2ma7JfZ5SmVlBrMzTZQaFrU-qwcusu1r7bOqBuiMjliNwQkdtFlCcuv2V9yl9a5ShCTD9j2TxTelh_vuMiIv48S62yEP8C2S6X2w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>867094099</pqid></control><display><type>article</type><title>Transition-time optimization for switched-mode dynamical systems</title><source>IEEE Electronic Library (IEL)</source><creator>Egerstedt, M. ; Wardi, Y. ; Axelsson, H.</creator><creatorcontrib>Egerstedt, M. ; Wardi, Y. ; Axelsson, H.</creatorcontrib><description>This note considers the problem of determining optimal switching times at which mode transitions should occur in multimodal, hybrid systems. It derives a simple formula for the gradient of the cost functional with respect to the switching times, and uses it in a gradient-descent algorithm. Much of the analysis is carried out in the setting of optimization problems involving fixed switching-mode sequences, but a possible extension is pointed out for the case where the switching-mode sequence is a part of the variable. Numerical examples testify to the viability of the proposed approach.</description><identifier>ISSN: 0018-9286</identifier><identifier>EISSN: 1558-2523</identifier><identifier>DOI: 10.1109/TAC.2005.861711</identifier><identifier>CODEN: IETAA9</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Algorithms ; Applied sciences ; Automatic control ; Computer science; control theory; systems ; Control systems ; Control theory. Systems ; Cost function ; Dynamical systems ; Exact sciences and technology ; Gradient-descent algorithms ; Hybrid systems ; Job shop scheduling ; Manufacturing ; Mathematical models ; Nonlinear systems ; Optimal control ; Optimization ; Piecewise linear techniques ; switched dynamical systems ; Switches ; Switching ; switching-time control ; Testing ; Viability</subject><ispartof>IEEE transactions on automatic control, 2006-01, Vol.51 (1), p.110-115</ispartof><rights>2006 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c459t-bb0e2c6e43773e536047463c4b129afa4848fe6199c871ef9cc0c62b7436a8953</citedby><cites>FETCH-LOGICAL-c459t-bb0e2c6e43773e536047463c4b129afa4848fe6199c871ef9cc0c62b7436a8953</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1576861$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,4010,27904,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1576861$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17432675$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Egerstedt, M.</creatorcontrib><creatorcontrib>Wardi, Y.</creatorcontrib><creatorcontrib>Axelsson, H.</creatorcontrib><title>Transition-time optimization for switched-mode dynamical systems</title><title>IEEE transactions on automatic control</title><addtitle>TAC</addtitle><description>This note considers the problem of determining optimal switching times at which mode transitions should occur in multimodal, hybrid systems. It derives a simple formula for the gradient of the cost functional with respect to the switching times, and uses it in a gradient-descent algorithm. Much of the analysis is carried out in the setting of optimization problems involving fixed switching-mode sequences, but a possible extension is pointed out for the case where the switching-mode sequence is a part of the variable. Numerical examples testify to the viability of the proposed approach.</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Automatic control</subject><subject>Computer science; control theory; systems</subject><subject>Control systems</subject><subject>Control theory. Systems</subject><subject>Cost function</subject><subject>Dynamical systems</subject><subject>Exact sciences and technology</subject><subject>Gradient-descent algorithms</subject><subject>Hybrid systems</subject><subject>Job shop scheduling</subject><subject>Manufacturing</subject><subject>Mathematical models</subject><subject>Nonlinear systems</subject><subject>Optimal control</subject><subject>Optimization</subject><subject>Piecewise linear techniques</subject><subject>switched dynamical systems</subject><subject>Switches</subject><subject>Switching</subject><subject>switching-time control</subject><subject>Testing</subject><subject>Viability</subject><issn>0018-9286</issn><issn>1558-2523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqFkctLAzEQxoMoWB9nD14WQfGybSbv3JTiCwpe6jmk6SxGurt1s0XqX2-WCoIHPYQhk998w5ePkDOgYwBqJ_Pb6ZhRKsdGgQbYIyOQ0pRMMr5PRpSCKS0z6pAcpfSWr0oIGJGbeeebFPvYNmUfayzadS7x0w-domq7In3EPrzisqzbJRbLbePrGPyqSNvUY51OyEHlVwlPv-sxebm_m08fy9nzw9P0dlYGIW1fLhYUWVAouNYcJVdUaKF4EAtg1ldeGGEqVGBtMBqwsiHQoNhCC668sZIfk6ud7rpr3zeYelfHFHC18g22m-SYpQaypf9BA1QYLjJ4_ScISgPPRw7LL36hb-2ma7JfZ5SmVlBrMzTZQaFrU-qwcusu1r7bOqBuiMjliNwQkdtFlCcuv2V9yl9a5ShCTD9j2TxTelh_vuMiIv48S62yEP8C2S6X2w</recordid><startdate>200601</startdate><enddate>200601</enddate><creator>Egerstedt, M.</creator><creator>Wardi, Y.</creator><creator>Axelsson, H.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>H8D</scope></search><sort><creationdate>200601</creationdate><title>Transition-time optimization for switched-mode dynamical systems</title><author>Egerstedt, M. ; Wardi, Y. ; Axelsson, H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c459t-bb0e2c6e43773e536047463c4b129afa4848fe6199c871ef9cc0c62b7436a8953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Automatic control</topic><topic>Computer science; control theory; systems</topic><topic>Control systems</topic><topic>Control theory. Systems</topic><topic>Cost function</topic><topic>Dynamical systems</topic><topic>Exact sciences and technology</topic><topic>Gradient-descent algorithms</topic><topic>Hybrid systems</topic><topic>Job shop scheduling</topic><topic>Manufacturing</topic><topic>Mathematical models</topic><topic>Nonlinear systems</topic><topic>Optimal control</topic><topic>Optimization</topic><topic>Piecewise linear techniques</topic><topic>switched dynamical systems</topic><topic>Switches</topic><topic>Switching</topic><topic>switching-time control</topic><topic>Testing</topic><topic>Viability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Egerstedt, M.</creatorcontrib><creatorcontrib>Wardi, Y.</creatorcontrib><creatorcontrib>Axelsson, H.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Aerospace Database</collection><jtitle>IEEE transactions on automatic control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Egerstedt, M.</au><au>Wardi, Y.</au><au>Axelsson, H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transition-time optimization for switched-mode dynamical systems</atitle><jtitle>IEEE transactions on automatic control</jtitle><stitle>TAC</stitle><date>2006-01</date><risdate>2006</risdate><volume>51</volume><issue>1</issue><spage>110</spage><epage>115</epage><pages>110-115</pages><issn>0018-9286</issn><eissn>1558-2523</eissn><coden>IETAA9</coden><abstract>This note considers the problem of determining optimal switching times at which mode transitions should occur in multimodal, hybrid systems. It derives a simple formula for the gradient of the cost functional with respect to the switching times, and uses it in a gradient-descent algorithm. Much of the analysis is carried out in the setting of optimization problems involving fixed switching-mode sequences, but a possible extension is pointed out for the case where the switching-mode sequence is a part of the variable. Numerical examples testify to the viability of the proposed approach.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TAC.2005.861711</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9286 |
ispartof | IEEE transactions on automatic control, 2006-01, Vol.51 (1), p.110-115 |
issn | 0018-9286 1558-2523 |
language | eng |
recordid | cdi_proquest_journals_867094099 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Applied sciences Automatic control Computer science control theory systems Control systems Control theory. Systems Cost function Dynamical systems Exact sciences and technology Gradient-descent algorithms Hybrid systems Job shop scheduling Manufacturing Mathematical models Nonlinear systems Optimal control Optimization Piecewise linear techniques switched dynamical systems Switches Switching switching-time control Testing Viability |
title | Transition-time optimization for switched-mode dynamical systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T05%3A53%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transition-time%20optimization%20for%20switched-mode%20dynamical%20systems&rft.jtitle=IEEE%20transactions%20on%20automatic%20control&rft.au=Egerstedt,%20M.&rft.date=2006-01&rft.volume=51&rft.issue=1&rft.spage=110&rft.epage=115&rft.pages=110-115&rft.issn=0018-9286&rft.eissn=1558-2523&rft.coden=IETAA9&rft_id=info:doi/10.1109/TAC.2005.861711&rft_dat=%3Cproquest_RIE%3E1671367155%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=867094099&rft_id=info:pmid/&rft_ieee_id=1576861&rfr_iscdi=true |