Transition-time optimization for switched-mode dynamical systems

This note considers the problem of determining optimal switching times at which mode transitions should occur in multimodal, hybrid systems. It derives a simple formula for the gradient of the cost functional with respect to the switching times, and uses it in a gradient-descent algorithm. Much of t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on automatic control 2006-01, Vol.51 (1), p.110-115
Hauptverfasser: Egerstedt, M., Wardi, Y., Axelsson, H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 115
container_issue 1
container_start_page 110
container_title IEEE transactions on automatic control
container_volume 51
creator Egerstedt, M.
Wardi, Y.
Axelsson, H.
description This note considers the problem of determining optimal switching times at which mode transitions should occur in multimodal, hybrid systems. It derives a simple formula for the gradient of the cost functional with respect to the switching times, and uses it in a gradient-descent algorithm. Much of the analysis is carried out in the setting of optimization problems involving fixed switching-mode sequences, but a possible extension is pointed out for the case where the switching-mode sequence is a part of the variable. Numerical examples testify to the viability of the proposed approach.
doi_str_mv 10.1109/TAC.2005.861711
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_867094099</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1576861</ieee_id><sourcerecordid>1671367155</sourcerecordid><originalsourceid>FETCH-LOGICAL-c459t-bb0e2c6e43773e536047463c4b129afa4848fe6199c871ef9cc0c62b7436a8953</originalsourceid><addsrcrecordid>eNqFkctLAzEQxoMoWB9nD14WQfGybSbv3JTiCwpe6jmk6SxGurt1s0XqX2-WCoIHPYQhk998w5ePkDOgYwBqJ_Pb6ZhRKsdGgQbYIyOQ0pRMMr5PRpSCKS0z6pAcpfSWr0oIGJGbeeebFPvYNmUfayzadS7x0w-domq7In3EPrzisqzbJRbLbePrGPyqSNvUY51OyEHlVwlPv-sxebm_m08fy9nzw9P0dlYGIW1fLhYUWVAouNYcJVdUaKF4EAtg1ldeGGEqVGBtMBqwsiHQoNhCC668sZIfk6ud7rpr3zeYelfHFHC18g22m-SYpQaypf9BA1QYLjJ4_ScISgPPRw7LL36hb-2ma7JfZ5SmVlBrMzTZQaFrU-qwcusu1r7bOqBuiMjliNwQkdtFlCcuv2V9yl9a5ShCTD9j2TxTelh_vuMiIv48S62yEP8C2S6X2w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>867094099</pqid></control><display><type>article</type><title>Transition-time optimization for switched-mode dynamical systems</title><source>IEEE Electronic Library (IEL)</source><creator>Egerstedt, M. ; Wardi, Y. ; Axelsson, H.</creator><creatorcontrib>Egerstedt, M. ; Wardi, Y. ; Axelsson, H.</creatorcontrib><description>This note considers the problem of determining optimal switching times at which mode transitions should occur in multimodal, hybrid systems. It derives a simple formula for the gradient of the cost functional with respect to the switching times, and uses it in a gradient-descent algorithm. Much of the analysis is carried out in the setting of optimization problems involving fixed switching-mode sequences, but a possible extension is pointed out for the case where the switching-mode sequence is a part of the variable. Numerical examples testify to the viability of the proposed approach.</description><identifier>ISSN: 0018-9286</identifier><identifier>EISSN: 1558-2523</identifier><identifier>DOI: 10.1109/TAC.2005.861711</identifier><identifier>CODEN: IETAA9</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Algorithms ; Applied sciences ; Automatic control ; Computer science; control theory; systems ; Control systems ; Control theory. Systems ; Cost function ; Dynamical systems ; Exact sciences and technology ; Gradient-descent algorithms ; Hybrid systems ; Job shop scheduling ; Manufacturing ; Mathematical models ; Nonlinear systems ; Optimal control ; Optimization ; Piecewise linear techniques ; switched dynamical systems ; Switches ; Switching ; switching-time control ; Testing ; Viability</subject><ispartof>IEEE transactions on automatic control, 2006-01, Vol.51 (1), p.110-115</ispartof><rights>2006 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c459t-bb0e2c6e43773e536047463c4b129afa4848fe6199c871ef9cc0c62b7436a8953</citedby><cites>FETCH-LOGICAL-c459t-bb0e2c6e43773e536047463c4b129afa4848fe6199c871ef9cc0c62b7436a8953</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1576861$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,4010,27904,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1576861$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17432675$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Egerstedt, M.</creatorcontrib><creatorcontrib>Wardi, Y.</creatorcontrib><creatorcontrib>Axelsson, H.</creatorcontrib><title>Transition-time optimization for switched-mode dynamical systems</title><title>IEEE transactions on automatic control</title><addtitle>TAC</addtitle><description>This note considers the problem of determining optimal switching times at which mode transitions should occur in multimodal, hybrid systems. It derives a simple formula for the gradient of the cost functional with respect to the switching times, and uses it in a gradient-descent algorithm. Much of the analysis is carried out in the setting of optimization problems involving fixed switching-mode sequences, but a possible extension is pointed out for the case where the switching-mode sequence is a part of the variable. Numerical examples testify to the viability of the proposed approach.</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Automatic control</subject><subject>Computer science; control theory; systems</subject><subject>Control systems</subject><subject>Control theory. Systems</subject><subject>Cost function</subject><subject>Dynamical systems</subject><subject>Exact sciences and technology</subject><subject>Gradient-descent algorithms</subject><subject>Hybrid systems</subject><subject>Job shop scheduling</subject><subject>Manufacturing</subject><subject>Mathematical models</subject><subject>Nonlinear systems</subject><subject>Optimal control</subject><subject>Optimization</subject><subject>Piecewise linear techniques</subject><subject>switched dynamical systems</subject><subject>Switches</subject><subject>Switching</subject><subject>switching-time control</subject><subject>Testing</subject><subject>Viability</subject><issn>0018-9286</issn><issn>1558-2523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqFkctLAzEQxoMoWB9nD14WQfGybSbv3JTiCwpe6jmk6SxGurt1s0XqX2-WCoIHPYQhk998w5ePkDOgYwBqJ_Pb6ZhRKsdGgQbYIyOQ0pRMMr5PRpSCKS0z6pAcpfSWr0oIGJGbeeebFPvYNmUfayzadS7x0w-domq7In3EPrzisqzbJRbLbePrGPyqSNvUY51OyEHlVwlPv-sxebm_m08fy9nzw9P0dlYGIW1fLhYUWVAouNYcJVdUaKF4EAtg1ldeGGEqVGBtMBqwsiHQoNhCC668sZIfk6ud7rpr3zeYelfHFHC18g22m-SYpQaypf9BA1QYLjJ4_ScISgPPRw7LL36hb-2ma7JfZ5SmVlBrMzTZQaFrU-qwcusu1r7bOqBuiMjliNwQkdtFlCcuv2V9yl9a5ShCTD9j2TxTelh_vuMiIv48S62yEP8C2S6X2w</recordid><startdate>200601</startdate><enddate>200601</enddate><creator>Egerstedt, M.</creator><creator>Wardi, Y.</creator><creator>Axelsson, H.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>H8D</scope></search><sort><creationdate>200601</creationdate><title>Transition-time optimization for switched-mode dynamical systems</title><author>Egerstedt, M. ; Wardi, Y. ; Axelsson, H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c459t-bb0e2c6e43773e536047463c4b129afa4848fe6199c871ef9cc0c62b7436a8953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Automatic control</topic><topic>Computer science; control theory; systems</topic><topic>Control systems</topic><topic>Control theory. Systems</topic><topic>Cost function</topic><topic>Dynamical systems</topic><topic>Exact sciences and technology</topic><topic>Gradient-descent algorithms</topic><topic>Hybrid systems</topic><topic>Job shop scheduling</topic><topic>Manufacturing</topic><topic>Mathematical models</topic><topic>Nonlinear systems</topic><topic>Optimal control</topic><topic>Optimization</topic><topic>Piecewise linear techniques</topic><topic>switched dynamical systems</topic><topic>Switches</topic><topic>Switching</topic><topic>switching-time control</topic><topic>Testing</topic><topic>Viability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Egerstedt, M.</creatorcontrib><creatorcontrib>Wardi, Y.</creatorcontrib><creatorcontrib>Axelsson, H.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Aerospace Database</collection><jtitle>IEEE transactions on automatic control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Egerstedt, M.</au><au>Wardi, Y.</au><au>Axelsson, H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transition-time optimization for switched-mode dynamical systems</atitle><jtitle>IEEE transactions on automatic control</jtitle><stitle>TAC</stitle><date>2006-01</date><risdate>2006</risdate><volume>51</volume><issue>1</issue><spage>110</spage><epage>115</epage><pages>110-115</pages><issn>0018-9286</issn><eissn>1558-2523</eissn><coden>IETAA9</coden><abstract>This note considers the problem of determining optimal switching times at which mode transitions should occur in multimodal, hybrid systems. It derives a simple formula for the gradient of the cost functional with respect to the switching times, and uses it in a gradient-descent algorithm. Much of the analysis is carried out in the setting of optimization problems involving fixed switching-mode sequences, but a possible extension is pointed out for the case where the switching-mode sequence is a part of the variable. Numerical examples testify to the viability of the proposed approach.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TAC.2005.861711</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9286
ispartof IEEE transactions on automatic control, 2006-01, Vol.51 (1), p.110-115
issn 0018-9286
1558-2523
language eng
recordid cdi_proquest_journals_867094099
source IEEE Electronic Library (IEL)
subjects Algorithms
Applied sciences
Automatic control
Computer science
control theory
systems
Control systems
Control theory. Systems
Cost function
Dynamical systems
Exact sciences and technology
Gradient-descent algorithms
Hybrid systems
Job shop scheduling
Manufacturing
Mathematical models
Nonlinear systems
Optimal control
Optimization
Piecewise linear techniques
switched dynamical systems
Switches
Switching
switching-time control
Testing
Viability
title Transition-time optimization for switched-mode dynamical systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T05%3A53%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transition-time%20optimization%20for%20switched-mode%20dynamical%20systems&rft.jtitle=IEEE%20transactions%20on%20automatic%20control&rft.au=Egerstedt,%20M.&rft.date=2006-01&rft.volume=51&rft.issue=1&rft.spage=110&rft.epage=115&rft.pages=110-115&rft.issn=0018-9286&rft.eissn=1558-2523&rft.coden=IETAA9&rft_id=info:doi/10.1109/TAC.2005.861711&rft_dat=%3Cproquest_RIE%3E1671367155%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=867094099&rft_id=info:pmid/&rft_ieee_id=1576861&rfr_iscdi=true