Bootstrap control

In this paper, we present a new way to control linear stochastic systems. The method is based on statistical bootstrap techniques. The optimal future control signal is derived in such a way that unknown noise distribution and uncertainties in parameter estimates are taken into account. This is achie...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on automatic control 2006-01, Vol.51 (1), p.28-37
Hauptverfasser: Aronsson, M., Arvastson, L., Holst, J., Lindoff, B., Svensson, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 37
container_issue 1
container_start_page 28
container_title IEEE transactions on automatic control
container_volume 51
creator Aronsson, M.
Arvastson, L.
Holst, J.
Lindoff, B.
Svensson, A.
description In this paper, we present a new way to control linear stochastic systems. The method is based on statistical bootstrap techniques. The optimal future control signal is derived in such a way that unknown noise distribution and uncertainties in parameter estimates are taken into account. This is achieved by resampling from existing data when calculating statistical distributions of future process values. The bootstrap algorithm takes care of arbitrary loss functions and unknown noise distribution even for small estimation sets. The efficient way of utilizing data implies that the method is also well suited for slowly time-varying stochastic systems.
doi_str_mv 10.1109/TAC.2005.861722
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_867094065</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1576853</ieee_id><sourcerecordid>889445256</sourcerecordid><originalsourceid>FETCH-LOGICAL-c435t-4bee1c585516d1b95ee110e9618de63894f77c63b53ad581b863c48e2edf53f13</originalsourceid><addsrcrecordid>eNqNkU2LFDEQhoMoOK4ePHnwIoJ66tlUkqquPq6DXzDgZT2HdDqBXnonbdKN-O83Qy8ueBAPRVHkqbdS9QrxCuQeQHaX11eHvZIS90zQKvVI7ACRG4VKPxY7KYGbTjE9Fc9KuaklGQM78fJjSktZspvf-HRacpqeiyfRTSW8uM8X4sfnT9eHr83x-5dvh6tj443GpTF9COCREYEG6DusJcjQEfAQSHNnYtt60j1qNyBDz6S94aDCEFFH0BfiuOmWX2Feezvn8dbl3za50U7rXKOvYUuwwNQNkaKtStGaYdCWY9tb4wdiHQnJnOU-bHJzTj_XUBZ7OxYfpsmdQlqL5fojgwqpku__SSoGKVWn_gOsV2wVV_DtX-BNWvOpXs8ytbIzkrBClxvkcyolh_hnY5D27KCtDtqzg3ZzsHa8u5d1xbspZnfyY3loa41WROfxrzduDCE8PGNLjFrfAXF0oBE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>867094065</pqid></control><display><type>article</type><title>Bootstrap control</title><source>IEEE Electronic Library (IEL)</source><creator>Aronsson, M. ; Arvastson, L. ; Holst, J. ; Lindoff, B. ; Svensson, A.</creator><creatorcontrib>Aronsson, M. ; Arvastson, L. ; Holst, J. ; Lindoff, B. ; Svensson, A.</creatorcontrib><description>In this paper, we present a new way to control linear stochastic systems. The method is based on statistical bootstrap techniques. The optimal future control signal is derived in such a way that unknown noise distribution and uncertainties in parameter estimates are taken into account. This is achieved by resampling from existing data when calculating statistical distributions of future process values. The bootstrap algorithm takes care of arbitrary loss functions and unknown noise distribution even for small estimation sets. The efficient way of utilizing data implies that the method is also well suited for slowly time-varying stochastic systems.</description><identifier>ISSN: 0018-9286</identifier><identifier>EISSN: 1558-2523</identifier><identifier>DOI: 10.1109/TAC.2005.861722</identifier><identifier>CODEN: IETAA9</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Algorithms ; Applied sciences ; Computer science; control theory; systems ; control ; Control systems ; Control theory. Systems ; Estimates ; Exact sciences and technology ; Feedback loop ; Generalized predictive control ; Matematik ; Mathematical analysis ; Mathematics ; Modelling and identification ; Natural Sciences ; Naturvetenskap ; Noise ; Open loop systems ; Optimal control ; Optimization ; Parameter estimation ; Probability Theory and Statistics ; Process control ; quality control ; resampling ; Sannolikhetsteori och statistik ; statistical bootstrap techniques ; Statistical distributions ; statistical process ; statistical process control ; stochastic control ; Stochastic processes ; Stochastic systems ; Time varying systems ; Uncertainty</subject><ispartof>IEEE transactions on automatic control, 2006-01, Vol.51 (1), p.28-37</ispartof><rights>2006 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c435t-4bee1c585516d1b95ee110e9618de63894f77c63b53ad581b863c48e2edf53f13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1576853$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,796,885,4022,27921,27922,27923,54756</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1576853$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17432668$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://lup.lub.lu.se/record/419855$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Aronsson, M.</creatorcontrib><creatorcontrib>Arvastson, L.</creatorcontrib><creatorcontrib>Holst, J.</creatorcontrib><creatorcontrib>Lindoff, B.</creatorcontrib><creatorcontrib>Svensson, A.</creatorcontrib><title>Bootstrap control</title><title>IEEE transactions on automatic control</title><addtitle>TAC</addtitle><description>In this paper, we present a new way to control linear stochastic systems. The method is based on statistical bootstrap techniques. The optimal future control signal is derived in such a way that unknown noise distribution and uncertainties in parameter estimates are taken into account. This is achieved by resampling from existing data when calculating statistical distributions of future process values. The bootstrap algorithm takes care of arbitrary loss functions and unknown noise distribution even for small estimation sets. The efficient way of utilizing data implies that the method is also well suited for slowly time-varying stochastic systems.</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Computer science; control theory; systems</subject><subject>control</subject><subject>Control systems</subject><subject>Control theory. Systems</subject><subject>Estimates</subject><subject>Exact sciences and technology</subject><subject>Feedback loop</subject><subject>Generalized predictive control</subject><subject>Matematik</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Modelling and identification</subject><subject>Natural Sciences</subject><subject>Naturvetenskap</subject><subject>Noise</subject><subject>Open loop systems</subject><subject>Optimal control</subject><subject>Optimization</subject><subject>Parameter estimation</subject><subject>Probability Theory and Statistics</subject><subject>Process control</subject><subject>quality control</subject><subject>resampling</subject><subject>Sannolikhetsteori och statistik</subject><subject>statistical bootstrap techniques</subject><subject>Statistical distributions</subject><subject>statistical process</subject><subject>statistical process control</subject><subject>stochastic control</subject><subject>Stochastic processes</subject><subject>Stochastic systems</subject><subject>Time varying systems</subject><subject>Uncertainty</subject><issn>0018-9286</issn><issn>1558-2523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqNkU2LFDEQhoMoOK4ePHnwIoJ66tlUkqquPq6DXzDgZT2HdDqBXnonbdKN-O83Qy8ueBAPRVHkqbdS9QrxCuQeQHaX11eHvZIS90zQKvVI7ACRG4VKPxY7KYGbTjE9Fc9KuaklGQM78fJjSktZspvf-HRacpqeiyfRTSW8uM8X4sfnT9eHr83x-5dvh6tj443GpTF9COCREYEG6DusJcjQEfAQSHNnYtt60j1qNyBDz6S94aDCEFFH0BfiuOmWX2Feezvn8dbl3za50U7rXKOvYUuwwNQNkaKtStGaYdCWY9tb4wdiHQnJnOU-bHJzTj_XUBZ7OxYfpsmdQlqL5fojgwqpku__SSoGKVWn_gOsV2wVV_DtX-BNWvOpXs8ytbIzkrBClxvkcyolh_hnY5D27KCtDtqzg3ZzsHa8u5d1xbspZnfyY3loa41WROfxrzduDCE8PGNLjFrfAXF0oBE</recordid><startdate>200601</startdate><enddate>200601</enddate><creator>Aronsson, M.</creator><creator>Arvastson, L.</creator><creator>Holst, J.</creator><creator>Lindoff, B.</creator><creator>Svensson, A.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>H8D</scope><scope>F28</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D95</scope></search><sort><creationdate>200601</creationdate><title>Bootstrap control</title><author>Aronsson, M. ; Arvastson, L. ; Holst, J. ; Lindoff, B. ; Svensson, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c435t-4bee1c585516d1b95ee110e9618de63894f77c63b53ad581b863c48e2edf53f13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Computer science; control theory; systems</topic><topic>control</topic><topic>Control systems</topic><topic>Control theory. Systems</topic><topic>Estimates</topic><topic>Exact sciences and technology</topic><topic>Feedback loop</topic><topic>Generalized predictive control</topic><topic>Matematik</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Modelling and identification</topic><topic>Natural Sciences</topic><topic>Naturvetenskap</topic><topic>Noise</topic><topic>Open loop systems</topic><topic>Optimal control</topic><topic>Optimization</topic><topic>Parameter estimation</topic><topic>Probability Theory and Statistics</topic><topic>Process control</topic><topic>quality control</topic><topic>resampling</topic><topic>Sannolikhetsteori och statistik</topic><topic>statistical bootstrap techniques</topic><topic>Statistical distributions</topic><topic>statistical process</topic><topic>statistical process control</topic><topic>stochastic control</topic><topic>Stochastic processes</topic><topic>Stochastic systems</topic><topic>Time varying systems</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aronsson, M.</creatorcontrib><creatorcontrib>Arvastson, L.</creatorcontrib><creatorcontrib>Holst, J.</creatorcontrib><creatorcontrib>Lindoff, B.</creatorcontrib><creatorcontrib>Svensson, A.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Aerospace Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Lunds universitet</collection><jtitle>IEEE transactions on automatic control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Aronsson, M.</au><au>Arvastson, L.</au><au>Holst, J.</au><au>Lindoff, B.</au><au>Svensson, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bootstrap control</atitle><jtitle>IEEE transactions on automatic control</jtitle><stitle>TAC</stitle><date>2006-01</date><risdate>2006</risdate><volume>51</volume><issue>1</issue><spage>28</spage><epage>37</epage><pages>28-37</pages><issn>0018-9286</issn><eissn>1558-2523</eissn><coden>IETAA9</coden><abstract>In this paper, we present a new way to control linear stochastic systems. The method is based on statistical bootstrap techniques. The optimal future control signal is derived in such a way that unknown noise distribution and uncertainties in parameter estimates are taken into account. This is achieved by resampling from existing data when calculating statistical distributions of future process values. The bootstrap algorithm takes care of arbitrary loss functions and unknown noise distribution even for small estimation sets. The efficient way of utilizing data implies that the method is also well suited for slowly time-varying stochastic systems.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TAC.2005.861722</doi><tpages>10</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9286
ispartof IEEE transactions on automatic control, 2006-01, Vol.51 (1), p.28-37
issn 0018-9286
1558-2523
language eng
recordid cdi_proquest_journals_867094065
source IEEE Electronic Library (IEL)
subjects Algorithms
Applied sciences
Computer science
control theory
systems
control
Control systems
Control theory. Systems
Estimates
Exact sciences and technology
Feedback loop
Generalized predictive control
Matematik
Mathematical analysis
Mathematics
Modelling and identification
Natural Sciences
Naturvetenskap
Noise
Open loop systems
Optimal control
Optimization
Parameter estimation
Probability Theory and Statistics
Process control
quality control
resampling
Sannolikhetsteori och statistik
statistical bootstrap techniques
Statistical distributions
statistical process
statistical process control
stochastic control
Stochastic processes
Stochastic systems
Time varying systems
Uncertainty
title Bootstrap control
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T16%3A21%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bootstrap%20control&rft.jtitle=IEEE%20transactions%20on%20automatic%20control&rft.au=Aronsson,%20M.&rft.date=2006-01&rft.volume=51&rft.issue=1&rft.spage=28&rft.epage=37&rft.pages=28-37&rft.issn=0018-9286&rft.eissn=1558-2523&rft.coden=IETAA9&rft_id=info:doi/10.1109/TAC.2005.861722&rft_dat=%3Cproquest_RIE%3E889445256%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=867094065&rft_id=info:pmid/&rft_ieee_id=1576853&rfr_iscdi=true