Intercomparison of Mesoscale Model Simulations of the Daytime Valley Wind System

Three-dimensional simulations of the daytime thermally induced valley wind system for an idealized valley–plain configuration, obtained from nine nonhydrostatic mesoscale models, are compared with special emphasis on the evolution of the along-valley wind. The models use the same initial and lateral...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Monthly weather review 2011-05, Vol.139 (5), p.1389-1409
Hauptverfasser: SCHMIDLI, Juerg, BILLINGS, Brian, VOSPER, Simon, WHITEMAN, C. David, WYSZOGRODZKI, Andrzej A, ZÄNGL, Günther, CHOW, Fotini K, DE WEKKER, Stephan F. J, DOYLE, James, GRUBISIC, Vanda, HOLT, Teddy, JIANG, Qiangfang, LUNDQUIST, Katherine A, SHERIDAN, Peter
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1409
container_issue 5
container_start_page 1389
container_title Monthly weather review
container_volume 139
creator SCHMIDLI, Juerg
BILLINGS, Brian
VOSPER, Simon
WHITEMAN, C. David
WYSZOGRODZKI, Andrzej A
ZÄNGL, Günther
CHOW, Fotini K
DE WEKKER, Stephan F. J
DOYLE, James
GRUBISIC, Vanda
HOLT, Teddy
JIANG, Qiangfang
LUNDQUIST, Katherine A
SHERIDAN, Peter
description Three-dimensional simulations of the daytime thermally induced valley wind system for an idealized valley–plain configuration, obtained from nine nonhydrostatic mesoscale models, are compared with special emphasis on the evolution of the along-valley wind. The models use the same initial and lateral boundary conditions, and standard parameterizations for turbulence, radiation, and land surface processes. The evolution of the mean along-valley wind (averaged over the valley cross section) is similar for all models, except for a time shift between individual models of up to 2 h and slight differences in the speed of the evolution. The analysis suggests that these differences are primarily due to differences in the simulated surface energy balance such as the dependence of the sensible heat flux on surface wind speed. Additional sensitivity experiments indicate that the evolution of the mean along-valley flow is largely independent of the choice of the dynamical core and of the turbulence parameterization scheme. The latter does, however, have a significant influence on the vertical structure of the boundary layer and of the along-valley wind. Thus, this ideal case may be useful for testing and evaluation of mesoscale numerical models with respect to land surface–atmosphere interactions and turbulence parameterizations.
doi_str_mv 10.1175/2010MWR3523.1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_866747560</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2348542131</sourcerecordid><originalsourceid>FETCH-LOGICAL-c322t-956bb927a24a564b3586e8d4372d3d098cdbc54859573e36c88e922b44c798d43</originalsourceid><addsrcrecordid>eNp10D1PwzAQBmALgUQpjOwWiDHFPn9mROWrUisQBTpGjuOKVElc7HTIvydRK8TCdMM99570InRJyYRSJW6BULJYvTEBbEKP0IgKIAnhKTtGI0JAJURyforOYtwQQqTkMEKvs6Z1wfp6a0IZfYP9Gi9c9NGayuGFL1yFl2W9q0xb-iYO6_bL4XvTtWXt8KepKtfhVdkUeNnF1tXn6GRtquguDnOMPh4f3qfPyfzlaTa9myeWAbRJKmSep6AMcCMkz5nQ0umCMwUFK0iqbZFbwbVIhWKOSau1SwFyzq1KBzdGV_vcbfDfOxfbbON3oelfZlpKxZWQpEfX_yHQoEAKTXSvkr2ywccY3DrbhrI2ocsoyYZmsz_NZrT3N4dUM9S0DqaxZfw9Ak45ANfsB0oudiY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2827265808</pqid></control><display><type>article</type><title>Intercomparison of Mesoscale Model Simulations of the Daytime Valley Wind System</title><source>American Meteorological Society</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>SCHMIDLI, Juerg ; BILLINGS, Brian ; VOSPER, Simon ; WHITEMAN, C. David ; WYSZOGRODZKI, Andrzej A ; ZÄNGL, Günther ; CHOW, Fotini K ; DE WEKKER, Stephan F. J ; DOYLE, James ; GRUBISIC, Vanda ; HOLT, Teddy ; JIANG, Qiangfang ; LUNDQUIST, Katherine A ; SHERIDAN, Peter</creator><creatorcontrib>SCHMIDLI, Juerg ; BILLINGS, Brian ; VOSPER, Simon ; WHITEMAN, C. David ; WYSZOGRODZKI, Andrzej A ; ZÄNGL, Günther ; CHOW, Fotini K ; DE WEKKER, Stephan F. J ; DOYLE, James ; GRUBISIC, Vanda ; HOLT, Teddy ; JIANG, Qiangfang ; LUNDQUIST, Katherine A ; SHERIDAN, Peter</creatorcontrib><description>Three-dimensional simulations of the daytime thermally induced valley wind system for an idealized valley–plain configuration, obtained from nine nonhydrostatic mesoscale models, are compared with special emphasis on the evolution of the along-valley wind. The models use the same initial and lateral boundary conditions, and standard parameterizations for turbulence, radiation, and land surface processes. The evolution of the mean along-valley wind (averaged over the valley cross section) is similar for all models, except for a time shift between individual models of up to 2 h and slight differences in the speed of the evolution. The analysis suggests that these differences are primarily due to differences in the simulated surface energy balance such as the dependence of the sensible heat flux on surface wind speed. Additional sensitivity experiments indicate that the evolution of the mean along-valley flow is largely independent of the choice of the dynamical core and of the turbulence parameterization scheme. The latter does, however, have a significant influence on the vertical structure of the boundary layer and of the along-valley wind. Thus, this ideal case may be useful for testing and evaluation of mesoscale numerical models with respect to land surface–atmosphere interactions and turbulence parameterizations.</description><identifier>ISSN: 0027-0644</identifier><identifier>EISSN: 1520-0493</identifier><identifier>DOI: 10.1175/2010MWR3523.1</identifier><identifier>CODEN: MWREAB</identifier><language>eng</language><publisher>Boston, MA: American Meteorological Society</publisher><subject>Atmospheric models ; Atmospheric turbulence ; Boundary conditions ; Boundary layers ; Daytime ; Earth, ocean, space ; Energy balance ; Enthalpy ; Evolution ; Exact sciences and technology ; External geophysics ; Grants ; Heat flux ; Heat transfer ; Influence ; Intercomparison ; Loam soils ; Mathematical models ; Mesoscale models ; Mesoscale phenomena ; Meteorology ; Modelling ; Numerical models ; Parameterization ; Physics ; Radiation ; Sensible heat ; Sensible heat flux ; Sensible heat transfer ; Simulation ; Studies ; Surface energy ; Surface energy balance ; Surface properties ; Surface wind ; Topography ; Turbulence ; Valley winds ; Valleys ; Vertical profiles ; Wind ; Wind speed</subject><ispartof>Monthly weather review, 2011-05, Vol.139 (5), p.1389-1409</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright American Meteorological Society 2011</rights><rights>Copyright American Meteorological Society May 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c322t-956bb927a24a564b3586e8d4372d3d098cdbc54859573e36c88e922b44c798d43</citedby><cites>FETCH-LOGICAL-c322t-956bb927a24a564b3586e8d4372d3d098cdbc54859573e36c88e922b44c798d43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,3668,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24142248$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>SCHMIDLI, Juerg</creatorcontrib><creatorcontrib>BILLINGS, Brian</creatorcontrib><creatorcontrib>VOSPER, Simon</creatorcontrib><creatorcontrib>WHITEMAN, C. David</creatorcontrib><creatorcontrib>WYSZOGRODZKI, Andrzej A</creatorcontrib><creatorcontrib>ZÄNGL, Günther</creatorcontrib><creatorcontrib>CHOW, Fotini K</creatorcontrib><creatorcontrib>DE WEKKER, Stephan F. J</creatorcontrib><creatorcontrib>DOYLE, James</creatorcontrib><creatorcontrib>GRUBISIC, Vanda</creatorcontrib><creatorcontrib>HOLT, Teddy</creatorcontrib><creatorcontrib>JIANG, Qiangfang</creatorcontrib><creatorcontrib>LUNDQUIST, Katherine A</creatorcontrib><creatorcontrib>SHERIDAN, Peter</creatorcontrib><title>Intercomparison of Mesoscale Model Simulations of the Daytime Valley Wind System</title><title>Monthly weather review</title><description>Three-dimensional simulations of the daytime thermally induced valley wind system for an idealized valley–plain configuration, obtained from nine nonhydrostatic mesoscale models, are compared with special emphasis on the evolution of the along-valley wind. The models use the same initial and lateral boundary conditions, and standard parameterizations for turbulence, radiation, and land surface processes. The evolution of the mean along-valley wind (averaged over the valley cross section) is similar for all models, except for a time shift between individual models of up to 2 h and slight differences in the speed of the evolution. The analysis suggests that these differences are primarily due to differences in the simulated surface energy balance such as the dependence of the sensible heat flux on surface wind speed. Additional sensitivity experiments indicate that the evolution of the mean along-valley flow is largely independent of the choice of the dynamical core and of the turbulence parameterization scheme. The latter does, however, have a significant influence on the vertical structure of the boundary layer and of the along-valley wind. Thus, this ideal case may be useful for testing and evaluation of mesoscale numerical models with respect to land surface–atmosphere interactions and turbulence parameterizations.</description><subject>Atmospheric models</subject><subject>Atmospheric turbulence</subject><subject>Boundary conditions</subject><subject>Boundary layers</subject><subject>Daytime</subject><subject>Earth, ocean, space</subject><subject>Energy balance</subject><subject>Enthalpy</subject><subject>Evolution</subject><subject>Exact sciences and technology</subject><subject>External geophysics</subject><subject>Grants</subject><subject>Heat flux</subject><subject>Heat transfer</subject><subject>Influence</subject><subject>Intercomparison</subject><subject>Loam soils</subject><subject>Mathematical models</subject><subject>Mesoscale models</subject><subject>Mesoscale phenomena</subject><subject>Meteorology</subject><subject>Modelling</subject><subject>Numerical models</subject><subject>Parameterization</subject><subject>Physics</subject><subject>Radiation</subject><subject>Sensible heat</subject><subject>Sensible heat flux</subject><subject>Sensible heat transfer</subject><subject>Simulation</subject><subject>Studies</subject><subject>Surface energy</subject><subject>Surface energy balance</subject><subject>Surface properties</subject><subject>Surface wind</subject><subject>Topography</subject><subject>Turbulence</subject><subject>Valley winds</subject><subject>Valleys</subject><subject>Vertical profiles</subject><subject>Wind</subject><subject>Wind speed</subject><issn>0027-0644</issn><issn>1520-0493</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp10D1PwzAQBmALgUQpjOwWiDHFPn9mROWrUisQBTpGjuOKVElc7HTIvydRK8TCdMM99570InRJyYRSJW6BULJYvTEBbEKP0IgKIAnhKTtGI0JAJURyforOYtwQQqTkMEKvs6Z1wfp6a0IZfYP9Gi9c9NGayuGFL1yFl2W9q0xb-iYO6_bL4XvTtWXt8KepKtfhVdkUeNnF1tXn6GRtquguDnOMPh4f3qfPyfzlaTa9myeWAbRJKmSep6AMcCMkz5nQ0umCMwUFK0iqbZFbwbVIhWKOSau1SwFyzq1KBzdGV_vcbfDfOxfbbON3oelfZlpKxZWQpEfX_yHQoEAKTXSvkr2ywccY3DrbhrI2ocsoyYZmsz_NZrT3N4dUM9S0DqaxZfw9Ak45ANfsB0oudiY</recordid><startdate>20110501</startdate><enddate>20110501</enddate><creator>SCHMIDLI, Juerg</creator><creator>BILLINGS, Brian</creator><creator>VOSPER, Simon</creator><creator>WHITEMAN, C. David</creator><creator>WYSZOGRODZKI, Andrzej A</creator><creator>ZÄNGL, Günther</creator><creator>CHOW, Fotini K</creator><creator>DE WEKKER, Stephan F. J</creator><creator>DOYLE, James</creator><creator>GRUBISIC, Vanda</creator><creator>HOLT, Teddy</creator><creator>JIANG, Qiangfang</creator><creator>LUNDQUIST, Katherine A</creator><creator>SHERIDAN, Peter</creator><general>American Meteorological Society</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8AF</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L7M</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20110501</creationdate><title>Intercomparison of Mesoscale Model Simulations of the Daytime Valley Wind System</title><author>SCHMIDLI, Juerg ; BILLINGS, Brian ; VOSPER, Simon ; WHITEMAN, C. David ; WYSZOGRODZKI, Andrzej A ; ZÄNGL, Günther ; CHOW, Fotini K ; DE WEKKER, Stephan F. J ; DOYLE, James ; GRUBISIC, Vanda ; HOLT, Teddy ; JIANG, Qiangfang ; LUNDQUIST, Katherine A ; SHERIDAN, Peter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c322t-956bb927a24a564b3586e8d4372d3d098cdbc54859573e36c88e922b44c798d43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Atmospheric models</topic><topic>Atmospheric turbulence</topic><topic>Boundary conditions</topic><topic>Boundary layers</topic><topic>Daytime</topic><topic>Earth, ocean, space</topic><topic>Energy balance</topic><topic>Enthalpy</topic><topic>Evolution</topic><topic>Exact sciences and technology</topic><topic>External geophysics</topic><topic>Grants</topic><topic>Heat flux</topic><topic>Heat transfer</topic><topic>Influence</topic><topic>Intercomparison</topic><topic>Loam soils</topic><topic>Mathematical models</topic><topic>Mesoscale models</topic><topic>Mesoscale phenomena</topic><topic>Meteorology</topic><topic>Modelling</topic><topic>Numerical models</topic><topic>Parameterization</topic><topic>Physics</topic><topic>Radiation</topic><topic>Sensible heat</topic><topic>Sensible heat flux</topic><topic>Sensible heat transfer</topic><topic>Simulation</topic><topic>Studies</topic><topic>Surface energy</topic><topic>Surface energy balance</topic><topic>Surface properties</topic><topic>Surface wind</topic><topic>Topography</topic><topic>Turbulence</topic><topic>Valley winds</topic><topic>Valleys</topic><topic>Vertical profiles</topic><topic>Wind</topic><topic>Wind speed</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>SCHMIDLI, Juerg</creatorcontrib><creatorcontrib>BILLINGS, Brian</creatorcontrib><creatorcontrib>VOSPER, Simon</creatorcontrib><creatorcontrib>WHITEMAN, C. David</creatorcontrib><creatorcontrib>WYSZOGRODZKI, Andrzej A</creatorcontrib><creatorcontrib>ZÄNGL, Günther</creatorcontrib><creatorcontrib>CHOW, Fotini K</creatorcontrib><creatorcontrib>DE WEKKER, Stephan F. J</creatorcontrib><creatorcontrib>DOYLE, James</creatorcontrib><creatorcontrib>GRUBISIC, Vanda</creatorcontrib><creatorcontrib>HOLT, Teddy</creatorcontrib><creatorcontrib>JIANG, Qiangfang</creatorcontrib><creatorcontrib>LUNDQUIST, Katherine A</creatorcontrib><creatorcontrib>SHERIDAN, Peter</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Monthly weather review</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>SCHMIDLI, Juerg</au><au>BILLINGS, Brian</au><au>VOSPER, Simon</au><au>WHITEMAN, C. David</au><au>WYSZOGRODZKI, Andrzej A</au><au>ZÄNGL, Günther</au><au>CHOW, Fotini K</au><au>DE WEKKER, Stephan F. J</au><au>DOYLE, James</au><au>GRUBISIC, Vanda</au><au>HOLT, Teddy</au><au>JIANG, Qiangfang</au><au>LUNDQUIST, Katherine A</au><au>SHERIDAN, Peter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intercomparison of Mesoscale Model Simulations of the Daytime Valley Wind System</atitle><jtitle>Monthly weather review</jtitle><date>2011-05-01</date><risdate>2011</risdate><volume>139</volume><issue>5</issue><spage>1389</spage><epage>1409</epage><pages>1389-1409</pages><issn>0027-0644</issn><eissn>1520-0493</eissn><coden>MWREAB</coden><abstract>Three-dimensional simulations of the daytime thermally induced valley wind system for an idealized valley–plain configuration, obtained from nine nonhydrostatic mesoscale models, are compared with special emphasis on the evolution of the along-valley wind. The models use the same initial and lateral boundary conditions, and standard parameterizations for turbulence, radiation, and land surface processes. The evolution of the mean along-valley wind (averaged over the valley cross section) is similar for all models, except for a time shift between individual models of up to 2 h and slight differences in the speed of the evolution. The analysis suggests that these differences are primarily due to differences in the simulated surface energy balance such as the dependence of the sensible heat flux on surface wind speed. Additional sensitivity experiments indicate that the evolution of the mean along-valley flow is largely independent of the choice of the dynamical core and of the turbulence parameterization scheme. The latter does, however, have a significant influence on the vertical structure of the boundary layer and of the along-valley wind. Thus, this ideal case may be useful for testing and evaluation of mesoscale numerical models with respect to land surface–atmosphere interactions and turbulence parameterizations.</abstract><cop>Boston, MA</cop><pub>American Meteorological Society</pub><doi>10.1175/2010MWR3523.1</doi><tpages>21</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0027-0644
ispartof Monthly weather review, 2011-05, Vol.139 (5), p.1389-1409
issn 0027-0644
1520-0493
language eng
recordid cdi_proquest_journals_866747560
source American Meteorological Society; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects Atmospheric models
Atmospheric turbulence
Boundary conditions
Boundary layers
Daytime
Earth, ocean, space
Energy balance
Enthalpy
Evolution
Exact sciences and technology
External geophysics
Grants
Heat flux
Heat transfer
Influence
Intercomparison
Loam soils
Mathematical models
Mesoscale models
Mesoscale phenomena
Meteorology
Modelling
Numerical models
Parameterization
Physics
Radiation
Sensible heat
Sensible heat flux
Sensible heat transfer
Simulation
Studies
Surface energy
Surface energy balance
Surface properties
Surface wind
Topography
Turbulence
Valley winds
Valleys
Vertical profiles
Wind
Wind speed
title Intercomparison of Mesoscale Model Simulations of the Daytime Valley Wind System
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T00%3A01%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Intercomparison%20of%20Mesoscale%20Model%20Simulations%20of%20the%20Daytime%20Valley%20Wind%20System&rft.jtitle=Monthly%20weather%20review&rft.au=SCHMIDLI,%20Juerg&rft.date=2011-05-01&rft.volume=139&rft.issue=5&rft.spage=1389&rft.epage=1409&rft.pages=1389-1409&rft.issn=0027-0644&rft.eissn=1520-0493&rft.coden=MWREAB&rft_id=info:doi/10.1175/2010MWR3523.1&rft_dat=%3Cproquest_cross%3E2348542131%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2827265808&rft_id=info:pmid/&rfr_iscdi=true