Uncooled mini-DIL module for 980-nm pump lasers

The importance of lower cost while maintaining high performance of erbium-doped fiber amplifiers (EDFAs) is growing with increased bandwidth demand. The uncooled 980-nm miniature dual-inline (Mini-DIL) pump laser is attractive for compact EDFA designs because it offers the advantages of lower cost,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on advanced packaging 2006-02, Vol.29 (1), p.171-177
Hauptverfasser: Jin Li, Brattain, M., Rice, A.K., Labudovic, M., Young, J.R., Cook, M., Fan Ye, Davis, M.K., Burka, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 177
container_issue 1
container_start_page 171
container_title IEEE transactions on advanced packaging
container_volume 29
creator Jin Li
Brattain, M.
Rice, A.K.
Labudovic, M.
Young, J.R.
Cook, M.
Fan Ye
Davis, M.K.
Burka, M.
description The importance of lower cost while maintaining high performance of erbium-doped fiber amplifiers (EDFAs) is growing with increased bandwidth demand. The uncooled 980-nm miniature dual-inline (Mini-DIL) pump laser is attractive for compact EDFA designs because it offers the advantages of lower cost, smaller footprint, minimal heat generation, and reduced electrical power consumption. In this paper, we report a low-cost uncooled Mini-DIL module designed for 980-nm pump lasers. A three-dimensional finite element analysis model effectively predicts module thermal and stress performance. Experimental results of module power and coupling efficiency stability over assembly processes are presented. A minimum optical output power of 150 mW is achieved in a group of 10 devices across a temperature range of 0/spl deg/C to 70/spl deg/C at a drive current of 350 mA with a 1.5-mm raised ridge InGaAs/AlGaAs single quantum well laser chip.
doi_str_mv 10.1109/TADVP.2005.849565
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_866396807</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1589144</ieee_id><sourcerecordid>896207560</sourcerecordid><originalsourceid>FETCH-LOGICAL-c447t-c45a1764d7643359ecd8a36a1862a339f4aee05be328c6418b69a581a64df4663</originalsourceid><addsrcrecordid>eNqNkU1LAzEQhoMoWKs_QLwsgnraNt-bHEvrR6Ggh9ZrSLNZ2LK7WZPuwX9v1i0UPKgMmQnkeWfIvABcIzhBCMrperZ4f5tgCNlEUMk4OwEjxFiWSingaX_HKCUEk3NwEcIOQkQFxSMw3TTGucrmSV02ZbpYrpLa5V1lk8L5JGrTpk7arm6TSgfrwyU4K3QV7NWhjsHm6XE9f0lXr8_L-WyVGkqzfcxMo4zTPB5CmLQmF5pwjQTHmhBZUG0tZFtLsDCcIrHlUjOBdJQUlHMyBg9D39a7j86GvarLYGxV6ca6LighOYYZ4zCS97-SWFKIRUb-AcZAkv8NCogpQ_3o2x_gznW-iXtRIv5BcgGzCKEBMt6F4G2hWl_W2n8qBFXvnfr2TvXeqcG7qLk7NNbB6KrwujFlOAozKmXcc-RuBq601h6fmZCIUvIFDxGdvQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>866396807</pqid></control><display><type>article</type><title>Uncooled mini-DIL module for 980-nm pump lasers</title><source>IEEE Electronic Library (IEL)</source><creator>Jin Li ; Brattain, M. ; Rice, A.K. ; Labudovic, M. ; Young, J.R. ; Cook, M. ; Fan Ye ; Davis, M.K. ; Burka, M.</creator><creatorcontrib>Jin Li ; Brattain, M. ; Rice, A.K. ; Labudovic, M. ; Young, J.R. ; Cook, M. ; Fan Ye ; Davis, M.K. ; Burka, M.</creatorcontrib><description>The importance of lower cost while maintaining high performance of erbium-doped fiber amplifiers (EDFAs) is growing with increased bandwidth demand. The uncooled 980-nm miniature dual-inline (Mini-DIL) pump laser is attractive for compact EDFA designs because it offers the advantages of lower cost, smaller footprint, minimal heat generation, and reduced electrical power consumption. In this paper, we report a low-cost uncooled Mini-DIL module designed for 980-nm pump lasers. A three-dimensional finite element analysis model effectively predicts module thermal and stress performance. Experimental results of module power and coupling efficiency stability over assembly processes are presented. A minimum optical output power of 150 mW is achieved in a group of 10 devices across a temperature range of 0/spl deg/C to 70/spl deg/C at a drive current of 350 mA with a 1.5-mm raised ridge InGaAs/AlGaAs single quantum well laser chip.</description><identifier>ISSN: 1521-3323</identifier><identifier>EISSN: 1557-9980</identifier><identifier>DOI: 10.1109/TADVP.2005.849565</identifier><identifier>CODEN: ITAPFZ</identifier><language>eng</language><publisher>Piscataway, NY: IEEE</publisher><subject>Aluminum gallium arsenides ; Amplifiers ; Applied sciences ; Circuit properties ; Costs ; Devices ; Electric power generation ; Electric, optical and optoelectronic circuits ; Electrical engineering. Electrical power engineering ; Electronic equipment and fabrication. Passive components, printed wiring boards, connectics ; Electronics ; Erbium-doped fiber amplifier ; Erbium-doped fiber lasers ; Exact sciences and technology ; Finite-element method ; Fundamental areas of phenomenology (including applications) ; Integrated optics. Optical fibers and wave guides ; Laser excitation ; Laser modes ; Lasers ; Mathematical models ; miniature dual-inline (Mini-DIL) ; Modules ; Optical and optoelectronic circuits ; Optical design ; Optics ; Physics ; Power electronics, power supplies ; Power generation ; Power lasers ; Pump lasers ; Pumps ; semiconductor laser ; Semiconductor lasers; laser diodes ; Thermal stresses ; uncooled laser</subject><ispartof>IEEE transactions on advanced packaging, 2006-02, Vol.29 (1), p.171-177</ispartof><rights>2006 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2006</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c447t-c45a1764d7643359ecd8a36a1862a339f4aee05be328c6418b69a581a64df4663</citedby><cites>FETCH-LOGICAL-c447t-c45a1764d7643359ecd8a36a1862a339f4aee05be328c6418b69a581a64df4663</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1589144$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1589144$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17499447$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Jin Li</creatorcontrib><creatorcontrib>Brattain, M.</creatorcontrib><creatorcontrib>Rice, A.K.</creatorcontrib><creatorcontrib>Labudovic, M.</creatorcontrib><creatorcontrib>Young, J.R.</creatorcontrib><creatorcontrib>Cook, M.</creatorcontrib><creatorcontrib>Fan Ye</creatorcontrib><creatorcontrib>Davis, M.K.</creatorcontrib><creatorcontrib>Burka, M.</creatorcontrib><title>Uncooled mini-DIL module for 980-nm pump lasers</title><title>IEEE transactions on advanced packaging</title><addtitle>TADVP</addtitle><description>The importance of lower cost while maintaining high performance of erbium-doped fiber amplifiers (EDFAs) is growing with increased bandwidth demand. The uncooled 980-nm miniature dual-inline (Mini-DIL) pump laser is attractive for compact EDFA designs because it offers the advantages of lower cost, smaller footprint, minimal heat generation, and reduced electrical power consumption. In this paper, we report a low-cost uncooled Mini-DIL module designed for 980-nm pump lasers. A three-dimensional finite element analysis model effectively predicts module thermal and stress performance. Experimental results of module power and coupling efficiency stability over assembly processes are presented. A minimum optical output power of 150 mW is achieved in a group of 10 devices across a temperature range of 0/spl deg/C to 70/spl deg/C at a drive current of 350 mA with a 1.5-mm raised ridge InGaAs/AlGaAs single quantum well laser chip.</description><subject>Aluminum gallium arsenides</subject><subject>Amplifiers</subject><subject>Applied sciences</subject><subject>Circuit properties</subject><subject>Costs</subject><subject>Devices</subject><subject>Electric power generation</subject><subject>Electric, optical and optoelectronic circuits</subject><subject>Electrical engineering. Electrical power engineering</subject><subject>Electronic equipment and fabrication. Passive components, printed wiring boards, connectics</subject><subject>Electronics</subject><subject>Erbium-doped fiber amplifier</subject><subject>Erbium-doped fiber lasers</subject><subject>Exact sciences and technology</subject><subject>Finite-element method</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Integrated optics. Optical fibers and wave guides</subject><subject>Laser excitation</subject><subject>Laser modes</subject><subject>Lasers</subject><subject>Mathematical models</subject><subject>miniature dual-inline (Mini-DIL)</subject><subject>Modules</subject><subject>Optical and optoelectronic circuits</subject><subject>Optical design</subject><subject>Optics</subject><subject>Physics</subject><subject>Power electronics, power supplies</subject><subject>Power generation</subject><subject>Power lasers</subject><subject>Pump lasers</subject><subject>Pumps</subject><subject>semiconductor laser</subject><subject>Semiconductor lasers; laser diodes</subject><subject>Thermal stresses</subject><subject>uncooled laser</subject><issn>1521-3323</issn><issn>1557-9980</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqNkU1LAzEQhoMoWKs_QLwsgnraNt-bHEvrR6Ggh9ZrSLNZ2LK7WZPuwX9v1i0UPKgMmQnkeWfIvABcIzhBCMrperZ4f5tgCNlEUMk4OwEjxFiWSingaX_HKCUEk3NwEcIOQkQFxSMw3TTGucrmSV02ZbpYrpLa5V1lk8L5JGrTpk7arm6TSgfrwyU4K3QV7NWhjsHm6XE9f0lXr8_L-WyVGkqzfcxMo4zTPB5CmLQmF5pwjQTHmhBZUG0tZFtLsDCcIrHlUjOBdJQUlHMyBg9D39a7j86GvarLYGxV6ca6LighOYYZ4zCS97-SWFKIRUb-AcZAkv8NCogpQ_3o2x_gznW-iXtRIv5BcgGzCKEBMt6F4G2hWl_W2n8qBFXvnfr2TvXeqcG7qLk7NNbB6KrwujFlOAozKmXcc-RuBq601h6fmZCIUvIFDxGdvQ</recordid><startdate>20060201</startdate><enddate>20060201</enddate><creator>Jin Li</creator><creator>Brattain, M.</creator><creator>Rice, A.K.</creator><creator>Labudovic, M.</creator><creator>Young, J.R.</creator><creator>Cook, M.</creator><creator>Fan Ye</creator><creator>Davis, M.K.</creator><creator>Burka, M.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7QF</scope><scope>JG9</scope><scope>7TB</scope><scope>FR3</scope><scope>F28</scope></search><sort><creationdate>20060201</creationdate><title>Uncooled mini-DIL module for 980-nm pump lasers</title><author>Jin Li ; Brattain, M. ; Rice, A.K. ; Labudovic, M. ; Young, J.R. ; Cook, M. ; Fan Ye ; Davis, M.K. ; Burka, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c447t-c45a1764d7643359ecd8a36a1862a339f4aee05be328c6418b69a581a64df4663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Aluminum gallium arsenides</topic><topic>Amplifiers</topic><topic>Applied sciences</topic><topic>Circuit properties</topic><topic>Costs</topic><topic>Devices</topic><topic>Electric power generation</topic><topic>Electric, optical and optoelectronic circuits</topic><topic>Electrical engineering. Electrical power engineering</topic><topic>Electronic equipment and fabrication. Passive components, printed wiring boards, connectics</topic><topic>Electronics</topic><topic>Erbium-doped fiber amplifier</topic><topic>Erbium-doped fiber lasers</topic><topic>Exact sciences and technology</topic><topic>Finite-element method</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Integrated optics. Optical fibers and wave guides</topic><topic>Laser excitation</topic><topic>Laser modes</topic><topic>Lasers</topic><topic>Mathematical models</topic><topic>miniature dual-inline (Mini-DIL)</topic><topic>Modules</topic><topic>Optical and optoelectronic circuits</topic><topic>Optical design</topic><topic>Optics</topic><topic>Physics</topic><topic>Power electronics, power supplies</topic><topic>Power generation</topic><topic>Power lasers</topic><topic>Pump lasers</topic><topic>Pumps</topic><topic>semiconductor laser</topic><topic>Semiconductor lasers; laser diodes</topic><topic>Thermal stresses</topic><topic>uncooled laser</topic><toplevel>online_resources</toplevel><creatorcontrib>Jin Li</creatorcontrib><creatorcontrib>Brattain, M.</creatorcontrib><creatorcontrib>Rice, A.K.</creatorcontrib><creatorcontrib>Labudovic, M.</creatorcontrib><creatorcontrib>Young, J.R.</creatorcontrib><creatorcontrib>Cook, M.</creatorcontrib><creatorcontrib>Fan Ye</creatorcontrib><creatorcontrib>Davis, M.K.</creatorcontrib><creatorcontrib>Burka, M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Aluminium Industry Abstracts</collection><collection>Materials Research Database</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Engineering Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><jtitle>IEEE transactions on advanced packaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jin Li</au><au>Brattain, M.</au><au>Rice, A.K.</au><au>Labudovic, M.</au><au>Young, J.R.</au><au>Cook, M.</au><au>Fan Ye</au><au>Davis, M.K.</au><au>Burka, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Uncooled mini-DIL module for 980-nm pump lasers</atitle><jtitle>IEEE transactions on advanced packaging</jtitle><stitle>TADVP</stitle><date>2006-02-01</date><risdate>2006</risdate><volume>29</volume><issue>1</issue><spage>171</spage><epage>177</epage><pages>171-177</pages><issn>1521-3323</issn><eissn>1557-9980</eissn><coden>ITAPFZ</coden><abstract>The importance of lower cost while maintaining high performance of erbium-doped fiber amplifiers (EDFAs) is growing with increased bandwidth demand. The uncooled 980-nm miniature dual-inline (Mini-DIL) pump laser is attractive for compact EDFA designs because it offers the advantages of lower cost, smaller footprint, minimal heat generation, and reduced electrical power consumption. In this paper, we report a low-cost uncooled Mini-DIL module designed for 980-nm pump lasers. A three-dimensional finite element analysis model effectively predicts module thermal and stress performance. Experimental results of module power and coupling efficiency stability over assembly processes are presented. A minimum optical output power of 150 mW is achieved in a group of 10 devices across a temperature range of 0/spl deg/C to 70/spl deg/C at a drive current of 350 mA with a 1.5-mm raised ridge InGaAs/AlGaAs single quantum well laser chip.</abstract><cop>Piscataway, NY</cop><pub>IEEE</pub><doi>10.1109/TADVP.2005.849565</doi><tpages>7</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1521-3323
ispartof IEEE transactions on advanced packaging, 2006-02, Vol.29 (1), p.171-177
issn 1521-3323
1557-9980
language eng
recordid cdi_proquest_journals_866396807
source IEEE Electronic Library (IEL)
subjects Aluminum gallium arsenides
Amplifiers
Applied sciences
Circuit properties
Costs
Devices
Electric power generation
Electric, optical and optoelectronic circuits
Electrical engineering. Electrical power engineering
Electronic equipment and fabrication. Passive components, printed wiring boards, connectics
Electronics
Erbium-doped fiber amplifier
Erbium-doped fiber lasers
Exact sciences and technology
Finite-element method
Fundamental areas of phenomenology (including applications)
Integrated optics. Optical fibers and wave guides
Laser excitation
Laser modes
Lasers
Mathematical models
miniature dual-inline (Mini-DIL)
Modules
Optical and optoelectronic circuits
Optical design
Optics
Physics
Power electronics, power supplies
Power generation
Power lasers
Pump lasers
Pumps
semiconductor laser
Semiconductor lasers
laser diodes
Thermal stresses
uncooled laser
title Uncooled mini-DIL module for 980-nm pump lasers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T20%3A39%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Uncooled%20mini-DIL%20module%20for%20980-nm%20pump%20lasers&rft.jtitle=IEEE%20transactions%20on%20advanced%20packaging&rft.au=Jin%20Li&rft.date=2006-02-01&rft.volume=29&rft.issue=1&rft.spage=171&rft.epage=177&rft.pages=171-177&rft.issn=1521-3323&rft.eissn=1557-9980&rft.coden=ITAPFZ&rft_id=info:doi/10.1109/TADVP.2005.849565&rft_dat=%3Cproquest_RIE%3E896207560%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=866396807&rft_id=info:pmid/&rft_ieee_id=1589144&rfr_iscdi=true