Uncooled mini-DIL module for 980-nm pump lasers
The importance of lower cost while maintaining high performance of erbium-doped fiber amplifiers (EDFAs) is growing with increased bandwidth demand. The uncooled 980-nm miniature dual-inline (Mini-DIL) pump laser is attractive for compact EDFA designs because it offers the advantages of lower cost,...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on advanced packaging 2006-02, Vol.29 (1), p.171-177 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 177 |
---|---|
container_issue | 1 |
container_start_page | 171 |
container_title | IEEE transactions on advanced packaging |
container_volume | 29 |
creator | Jin Li Brattain, M. Rice, A.K. Labudovic, M. Young, J.R. Cook, M. Fan Ye Davis, M.K. Burka, M. |
description | The importance of lower cost while maintaining high performance of erbium-doped fiber amplifiers (EDFAs) is growing with increased bandwidth demand. The uncooled 980-nm miniature dual-inline (Mini-DIL) pump laser is attractive for compact EDFA designs because it offers the advantages of lower cost, smaller footprint, minimal heat generation, and reduced electrical power consumption. In this paper, we report a low-cost uncooled Mini-DIL module designed for 980-nm pump lasers. A three-dimensional finite element analysis model effectively predicts module thermal and stress performance. Experimental results of module power and coupling efficiency stability over assembly processes are presented. A minimum optical output power of 150 mW is achieved in a group of 10 devices across a temperature range of 0/spl deg/C to 70/spl deg/C at a drive current of 350 mA with a 1.5-mm raised ridge InGaAs/AlGaAs single quantum well laser chip. |
doi_str_mv | 10.1109/TADVP.2005.849565 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_866396807</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1589144</ieee_id><sourcerecordid>896207560</sourcerecordid><originalsourceid>FETCH-LOGICAL-c447t-c45a1764d7643359ecd8a36a1862a339f4aee05be328c6418b69a581a64df4663</originalsourceid><addsrcrecordid>eNqNkU1LAzEQhoMoWKs_QLwsgnraNt-bHEvrR6Ggh9ZrSLNZ2LK7WZPuwX9v1i0UPKgMmQnkeWfIvABcIzhBCMrperZ4f5tgCNlEUMk4OwEjxFiWSingaX_HKCUEk3NwEcIOQkQFxSMw3TTGucrmSV02ZbpYrpLa5V1lk8L5JGrTpk7arm6TSgfrwyU4K3QV7NWhjsHm6XE9f0lXr8_L-WyVGkqzfcxMo4zTPB5CmLQmF5pwjQTHmhBZUG0tZFtLsDCcIrHlUjOBdJQUlHMyBg9D39a7j86GvarLYGxV6ca6LighOYYZ4zCS97-SWFKIRUb-AcZAkv8NCogpQ_3o2x_gznW-iXtRIv5BcgGzCKEBMt6F4G2hWl_W2n8qBFXvnfr2TvXeqcG7qLk7NNbB6KrwujFlOAozKmXcc-RuBq601h6fmZCIUvIFDxGdvQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>866396807</pqid></control><display><type>article</type><title>Uncooled mini-DIL module for 980-nm pump lasers</title><source>IEEE Electronic Library (IEL)</source><creator>Jin Li ; Brattain, M. ; Rice, A.K. ; Labudovic, M. ; Young, J.R. ; Cook, M. ; Fan Ye ; Davis, M.K. ; Burka, M.</creator><creatorcontrib>Jin Li ; Brattain, M. ; Rice, A.K. ; Labudovic, M. ; Young, J.R. ; Cook, M. ; Fan Ye ; Davis, M.K. ; Burka, M.</creatorcontrib><description>The importance of lower cost while maintaining high performance of erbium-doped fiber amplifiers (EDFAs) is growing with increased bandwidth demand. The uncooled 980-nm miniature dual-inline (Mini-DIL) pump laser is attractive for compact EDFA designs because it offers the advantages of lower cost, smaller footprint, minimal heat generation, and reduced electrical power consumption. In this paper, we report a low-cost uncooled Mini-DIL module designed for 980-nm pump lasers. A three-dimensional finite element analysis model effectively predicts module thermal and stress performance. Experimental results of module power and coupling efficiency stability over assembly processes are presented. A minimum optical output power of 150 mW is achieved in a group of 10 devices across a temperature range of 0/spl deg/C to 70/spl deg/C at a drive current of 350 mA with a 1.5-mm raised ridge InGaAs/AlGaAs single quantum well laser chip.</description><identifier>ISSN: 1521-3323</identifier><identifier>EISSN: 1557-9980</identifier><identifier>DOI: 10.1109/TADVP.2005.849565</identifier><identifier>CODEN: ITAPFZ</identifier><language>eng</language><publisher>Piscataway, NY: IEEE</publisher><subject>Aluminum gallium arsenides ; Amplifiers ; Applied sciences ; Circuit properties ; Costs ; Devices ; Electric power generation ; Electric, optical and optoelectronic circuits ; Electrical engineering. Electrical power engineering ; Electronic equipment and fabrication. Passive components, printed wiring boards, connectics ; Electronics ; Erbium-doped fiber amplifier ; Erbium-doped fiber lasers ; Exact sciences and technology ; Finite-element method ; Fundamental areas of phenomenology (including applications) ; Integrated optics. Optical fibers and wave guides ; Laser excitation ; Laser modes ; Lasers ; Mathematical models ; miniature dual-inline (Mini-DIL) ; Modules ; Optical and optoelectronic circuits ; Optical design ; Optics ; Physics ; Power electronics, power supplies ; Power generation ; Power lasers ; Pump lasers ; Pumps ; semiconductor laser ; Semiconductor lasers; laser diodes ; Thermal stresses ; uncooled laser</subject><ispartof>IEEE transactions on advanced packaging, 2006-02, Vol.29 (1), p.171-177</ispartof><rights>2006 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2006</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c447t-c45a1764d7643359ecd8a36a1862a339f4aee05be328c6418b69a581a64df4663</citedby><cites>FETCH-LOGICAL-c447t-c45a1764d7643359ecd8a36a1862a339f4aee05be328c6418b69a581a64df4663</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1589144$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1589144$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17499447$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Jin Li</creatorcontrib><creatorcontrib>Brattain, M.</creatorcontrib><creatorcontrib>Rice, A.K.</creatorcontrib><creatorcontrib>Labudovic, M.</creatorcontrib><creatorcontrib>Young, J.R.</creatorcontrib><creatorcontrib>Cook, M.</creatorcontrib><creatorcontrib>Fan Ye</creatorcontrib><creatorcontrib>Davis, M.K.</creatorcontrib><creatorcontrib>Burka, M.</creatorcontrib><title>Uncooled mini-DIL module for 980-nm pump lasers</title><title>IEEE transactions on advanced packaging</title><addtitle>TADVP</addtitle><description>The importance of lower cost while maintaining high performance of erbium-doped fiber amplifiers (EDFAs) is growing with increased bandwidth demand. The uncooled 980-nm miniature dual-inline (Mini-DIL) pump laser is attractive for compact EDFA designs because it offers the advantages of lower cost, smaller footprint, minimal heat generation, and reduced electrical power consumption. In this paper, we report a low-cost uncooled Mini-DIL module designed for 980-nm pump lasers. A three-dimensional finite element analysis model effectively predicts module thermal and stress performance. Experimental results of module power and coupling efficiency stability over assembly processes are presented. A minimum optical output power of 150 mW is achieved in a group of 10 devices across a temperature range of 0/spl deg/C to 70/spl deg/C at a drive current of 350 mA with a 1.5-mm raised ridge InGaAs/AlGaAs single quantum well laser chip.</description><subject>Aluminum gallium arsenides</subject><subject>Amplifiers</subject><subject>Applied sciences</subject><subject>Circuit properties</subject><subject>Costs</subject><subject>Devices</subject><subject>Electric power generation</subject><subject>Electric, optical and optoelectronic circuits</subject><subject>Electrical engineering. Electrical power engineering</subject><subject>Electronic equipment and fabrication. Passive components, printed wiring boards, connectics</subject><subject>Electronics</subject><subject>Erbium-doped fiber amplifier</subject><subject>Erbium-doped fiber lasers</subject><subject>Exact sciences and technology</subject><subject>Finite-element method</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Integrated optics. Optical fibers and wave guides</subject><subject>Laser excitation</subject><subject>Laser modes</subject><subject>Lasers</subject><subject>Mathematical models</subject><subject>miniature dual-inline (Mini-DIL)</subject><subject>Modules</subject><subject>Optical and optoelectronic circuits</subject><subject>Optical design</subject><subject>Optics</subject><subject>Physics</subject><subject>Power electronics, power supplies</subject><subject>Power generation</subject><subject>Power lasers</subject><subject>Pump lasers</subject><subject>Pumps</subject><subject>semiconductor laser</subject><subject>Semiconductor lasers; laser diodes</subject><subject>Thermal stresses</subject><subject>uncooled laser</subject><issn>1521-3323</issn><issn>1557-9980</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqNkU1LAzEQhoMoWKs_QLwsgnraNt-bHEvrR6Ggh9ZrSLNZ2LK7WZPuwX9v1i0UPKgMmQnkeWfIvABcIzhBCMrperZ4f5tgCNlEUMk4OwEjxFiWSingaX_HKCUEk3NwEcIOQkQFxSMw3TTGucrmSV02ZbpYrpLa5V1lk8L5JGrTpk7arm6TSgfrwyU4K3QV7NWhjsHm6XE9f0lXr8_L-WyVGkqzfcxMo4zTPB5CmLQmF5pwjQTHmhBZUG0tZFtLsDCcIrHlUjOBdJQUlHMyBg9D39a7j86GvarLYGxV6ca6LighOYYZ4zCS97-SWFKIRUb-AcZAkv8NCogpQ_3o2x_gznW-iXtRIv5BcgGzCKEBMt6F4G2hWl_W2n8qBFXvnfr2TvXeqcG7qLk7NNbB6KrwujFlOAozKmXcc-RuBq601h6fmZCIUvIFDxGdvQ</recordid><startdate>20060201</startdate><enddate>20060201</enddate><creator>Jin Li</creator><creator>Brattain, M.</creator><creator>Rice, A.K.</creator><creator>Labudovic, M.</creator><creator>Young, J.R.</creator><creator>Cook, M.</creator><creator>Fan Ye</creator><creator>Davis, M.K.</creator><creator>Burka, M.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7QF</scope><scope>JG9</scope><scope>7TB</scope><scope>FR3</scope><scope>F28</scope></search><sort><creationdate>20060201</creationdate><title>Uncooled mini-DIL module for 980-nm pump lasers</title><author>Jin Li ; Brattain, M. ; Rice, A.K. ; Labudovic, M. ; Young, J.R. ; Cook, M. ; Fan Ye ; Davis, M.K. ; Burka, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c447t-c45a1764d7643359ecd8a36a1862a339f4aee05be328c6418b69a581a64df4663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Aluminum gallium arsenides</topic><topic>Amplifiers</topic><topic>Applied sciences</topic><topic>Circuit properties</topic><topic>Costs</topic><topic>Devices</topic><topic>Electric power generation</topic><topic>Electric, optical and optoelectronic circuits</topic><topic>Electrical engineering. Electrical power engineering</topic><topic>Electronic equipment and fabrication. Passive components, printed wiring boards, connectics</topic><topic>Electronics</topic><topic>Erbium-doped fiber amplifier</topic><topic>Erbium-doped fiber lasers</topic><topic>Exact sciences and technology</topic><topic>Finite-element method</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Integrated optics. Optical fibers and wave guides</topic><topic>Laser excitation</topic><topic>Laser modes</topic><topic>Lasers</topic><topic>Mathematical models</topic><topic>miniature dual-inline (Mini-DIL)</topic><topic>Modules</topic><topic>Optical and optoelectronic circuits</topic><topic>Optical design</topic><topic>Optics</topic><topic>Physics</topic><topic>Power electronics, power supplies</topic><topic>Power generation</topic><topic>Power lasers</topic><topic>Pump lasers</topic><topic>Pumps</topic><topic>semiconductor laser</topic><topic>Semiconductor lasers; laser diodes</topic><topic>Thermal stresses</topic><topic>uncooled laser</topic><toplevel>online_resources</toplevel><creatorcontrib>Jin Li</creatorcontrib><creatorcontrib>Brattain, M.</creatorcontrib><creatorcontrib>Rice, A.K.</creatorcontrib><creatorcontrib>Labudovic, M.</creatorcontrib><creatorcontrib>Young, J.R.</creatorcontrib><creatorcontrib>Cook, M.</creatorcontrib><creatorcontrib>Fan Ye</creatorcontrib><creatorcontrib>Davis, M.K.</creatorcontrib><creatorcontrib>Burka, M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Aluminium Industry Abstracts</collection><collection>Materials Research Database</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Engineering Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><jtitle>IEEE transactions on advanced packaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jin Li</au><au>Brattain, M.</au><au>Rice, A.K.</au><au>Labudovic, M.</au><au>Young, J.R.</au><au>Cook, M.</au><au>Fan Ye</au><au>Davis, M.K.</au><au>Burka, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Uncooled mini-DIL module for 980-nm pump lasers</atitle><jtitle>IEEE transactions on advanced packaging</jtitle><stitle>TADVP</stitle><date>2006-02-01</date><risdate>2006</risdate><volume>29</volume><issue>1</issue><spage>171</spage><epage>177</epage><pages>171-177</pages><issn>1521-3323</issn><eissn>1557-9980</eissn><coden>ITAPFZ</coden><abstract>The importance of lower cost while maintaining high performance of erbium-doped fiber amplifiers (EDFAs) is growing with increased bandwidth demand. The uncooled 980-nm miniature dual-inline (Mini-DIL) pump laser is attractive for compact EDFA designs because it offers the advantages of lower cost, smaller footprint, minimal heat generation, and reduced electrical power consumption. In this paper, we report a low-cost uncooled Mini-DIL module designed for 980-nm pump lasers. A three-dimensional finite element analysis model effectively predicts module thermal and stress performance. Experimental results of module power and coupling efficiency stability over assembly processes are presented. A minimum optical output power of 150 mW is achieved in a group of 10 devices across a temperature range of 0/spl deg/C to 70/spl deg/C at a drive current of 350 mA with a 1.5-mm raised ridge InGaAs/AlGaAs single quantum well laser chip.</abstract><cop>Piscataway, NY</cop><pub>IEEE</pub><doi>10.1109/TADVP.2005.849565</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1521-3323 |
ispartof | IEEE transactions on advanced packaging, 2006-02, Vol.29 (1), p.171-177 |
issn | 1521-3323 1557-9980 |
language | eng |
recordid | cdi_proquest_journals_866396807 |
source | IEEE Electronic Library (IEL) |
subjects | Aluminum gallium arsenides Amplifiers Applied sciences Circuit properties Costs Devices Electric power generation Electric, optical and optoelectronic circuits Electrical engineering. Electrical power engineering Electronic equipment and fabrication. Passive components, printed wiring boards, connectics Electronics Erbium-doped fiber amplifier Erbium-doped fiber lasers Exact sciences and technology Finite-element method Fundamental areas of phenomenology (including applications) Integrated optics. Optical fibers and wave guides Laser excitation Laser modes Lasers Mathematical models miniature dual-inline (Mini-DIL) Modules Optical and optoelectronic circuits Optical design Optics Physics Power electronics, power supplies Power generation Power lasers Pump lasers Pumps semiconductor laser Semiconductor lasers laser diodes Thermal stresses uncooled laser |
title | Uncooled mini-DIL module for 980-nm pump lasers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T20%3A39%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Uncooled%20mini-DIL%20module%20for%20980-nm%20pump%20lasers&rft.jtitle=IEEE%20transactions%20on%20advanced%20packaging&rft.au=Jin%20Li&rft.date=2006-02-01&rft.volume=29&rft.issue=1&rft.spage=171&rft.epage=177&rft.pages=171-177&rft.issn=1521-3323&rft.eissn=1557-9980&rft.coden=ITAPFZ&rft_id=info:doi/10.1109/TADVP.2005.849565&rft_dat=%3Cproquest_RIE%3E896207560%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=866396807&rft_id=info:pmid/&rft_ieee_id=1589144&rfr_iscdi=true |