Performance evaluation of object detection algorithms for video surveillance

In this paper, we propose novel methods to evaluate the performance of object detection algorithms in video sequences. This procedure allows us to highlight characteristics (e.g., region splitting or merging) which are specific of the method being used. The proposed framework compares the output of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on multimedia 2006-08, Vol.8 (4), p.761-774
Hauptverfasser: Nascimento, J.C., Marques, J.S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 774
container_issue 4
container_start_page 761
container_title IEEE transactions on multimedia
container_volume 8
creator Nascimento, J.C.
Marques, J.S.
description In this paper, we propose novel methods to evaluate the performance of object detection algorithms in video sequences. This procedure allows us to highlight characteristics (e.g., region splitting or merging) which are specific of the method being used. The proposed framework compares the output of the algorithm with the ground truth and measures the differences according to objective metrics. In this way it is possible to perform a fair comparison among different methods, evaluating their strengths and weaknesses and allowing the user to perform a reliable choice of the best method for a specific application. We apply this methodology to segmentation algorithms recently proposed and describe their performance. These methods were evaluated in order to assess how well they can detect moving regions in an outdoor scene in fixed-camera situations
doi_str_mv 10.1109/TMM.2006.876287
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_866390601</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1658038</ieee_id><sourcerecordid>896228584</sourcerecordid><originalsourceid>FETCH-LOGICAL-c391t-ab881d4441fe4288e57af4edc060300d3d0f561fce18e48f321d9141dece86b73</originalsourceid><addsrcrecordid>eNpdkM1LAzEQxRdRsFbPHrwsgnjadmY3m2SPIn5Bix7qOaTZiW7ZNjXZLfjfm6WFgqcZJr_3ZvKS5BphggjVdDGfT3IAPpGC51KcJCOsGGYAQpzGvswhq3KE8-QihBUAshLEKJl9kLfOr_XGUEo73fa6a9wmdTZ1yxWZLq2pi2WY6fbL-ab7Xoc0StJdU5NLQ-931LTtYHCZnFndBro61HHy-fy0eHzNZu8vb48Ps8wUFXaZXkqJNWMMLbFcSiqFtoxqAxwKgLqowZYcrSGUxKQtcqwrZFiTIcmXohgn93vfrXc_PYVOrZtgaDiCXB-UrHiey1KySN7-I1eu95t4nJKcF1XciBGa7iHjXQierNr6Zq39r0JQQ7YqZquGbNU-26i4O9jqYHRrffx9E44yUZWSC4jczZ5riOj4zEsJhSz-AI0xgko</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>866390601</pqid></control><display><type>article</type><title>Performance evaluation of object detection algorithms for video surveillance</title><source>IEEE Electronic Library (IEL)</source><creator>Nascimento, J.C. ; Marques, J.S.</creator><creatorcontrib>Nascimento, J.C. ; Marques, J.S.</creatorcontrib><description>In this paper, we propose novel methods to evaluate the performance of object detection algorithms in video sequences. This procedure allows us to highlight characteristics (e.g., region splitting or merging) which are specific of the method being used. The proposed framework compares the output of the algorithm with the ground truth and measures the differences according to objective metrics. In this way it is possible to perform a fair comparison among different methods, evaluating their strengths and weaknesses and allowing the user to perform a reliable choice of the best method for a specific application. We apply this methodology to segmentation algorithms recently proposed and describe their performance. These methods were evaluated in order to assess how well they can detect moving regions in an outdoor scene in fixed-camera situations</description><identifier>ISSN: 1520-9210</identifier><identifier>EISSN: 1941-0077</identifier><identifier>DOI: 10.1109/TMM.2006.876287</identifier><identifier>CODEN: ITMUF8</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Algorithms ; Applied sciences ; Artificial intelligence ; Computer science; control theory; systems ; Data mining ; Exact sciences and technology ; Ground truth ; Image segmentation ; Layout ; Merging ; metrics ; Multimedia ; multiple interpretations ; Object detection ; Outdoor ; Pattern recognition. Digital image processing. Computational geometry ; Performance evaluation ; Pixel ; Segmentation ; Streaming media ; Surveillance ; surveillance systems ; Video sequences ; Video surveillance</subject><ispartof>IEEE transactions on multimedia, 2006-08, Vol.8 (4), p.761-774</ispartof><rights>2006 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2006</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c391t-ab881d4441fe4288e57af4edc060300d3d0f561fce18e48f321d9141dece86b73</citedby><cites>FETCH-LOGICAL-c391t-ab881d4441fe4288e57af4edc060300d3d0f561fce18e48f321d9141dece86b73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1658038$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1658038$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17958670$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Nascimento, J.C.</creatorcontrib><creatorcontrib>Marques, J.S.</creatorcontrib><title>Performance evaluation of object detection algorithms for video surveillance</title><title>IEEE transactions on multimedia</title><addtitle>TMM</addtitle><description>In this paper, we propose novel methods to evaluate the performance of object detection algorithms in video sequences. This procedure allows us to highlight characteristics (e.g., region splitting or merging) which are specific of the method being used. The proposed framework compares the output of the algorithm with the ground truth and measures the differences according to objective metrics. In this way it is possible to perform a fair comparison among different methods, evaluating their strengths and weaknesses and allowing the user to perform a reliable choice of the best method for a specific application. We apply this methodology to segmentation algorithms recently proposed and describe their performance. These methods were evaluated in order to assess how well they can detect moving regions in an outdoor scene in fixed-camera situations</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer science; control theory; systems</subject><subject>Data mining</subject><subject>Exact sciences and technology</subject><subject>Ground truth</subject><subject>Image segmentation</subject><subject>Layout</subject><subject>Merging</subject><subject>metrics</subject><subject>Multimedia</subject><subject>multiple interpretations</subject><subject>Object detection</subject><subject>Outdoor</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><subject>Performance evaluation</subject><subject>Pixel</subject><subject>Segmentation</subject><subject>Streaming media</subject><subject>Surveillance</subject><subject>surveillance systems</subject><subject>Video sequences</subject><subject>Video surveillance</subject><issn>1520-9210</issn><issn>1941-0077</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkM1LAzEQxRdRsFbPHrwsgnjadmY3m2SPIn5Bix7qOaTZiW7ZNjXZLfjfm6WFgqcZJr_3ZvKS5BphggjVdDGfT3IAPpGC51KcJCOsGGYAQpzGvswhq3KE8-QihBUAshLEKJl9kLfOr_XGUEo73fa6a9wmdTZ1yxWZLq2pi2WY6fbL-ab7Xoc0StJdU5NLQ-931LTtYHCZnFndBro61HHy-fy0eHzNZu8vb48Ps8wUFXaZXkqJNWMMLbFcSiqFtoxqAxwKgLqowZYcrSGUxKQtcqwrZFiTIcmXohgn93vfrXc_PYVOrZtgaDiCXB-UrHiey1KySN7-I1eu95t4nJKcF1XciBGa7iHjXQierNr6Zq39r0JQQ7YqZquGbNU-26i4O9jqYHRrffx9E44yUZWSC4jczZ5riOj4zEsJhSz-AI0xgko</recordid><startdate>20060801</startdate><enddate>20060801</enddate><creator>Nascimento, J.C.</creator><creator>Marques, J.S.</creator><general>IEEE</general><general>Institute of Electrical and Electronic Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20060801</creationdate><title>Performance evaluation of object detection algorithms for video surveillance</title><author>Nascimento, J.C. ; Marques, J.S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c391t-ab881d4441fe4288e57af4edc060300d3d0f561fce18e48f321d9141dece86b73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer science; control theory; systems</topic><topic>Data mining</topic><topic>Exact sciences and technology</topic><topic>Ground truth</topic><topic>Image segmentation</topic><topic>Layout</topic><topic>Merging</topic><topic>metrics</topic><topic>Multimedia</topic><topic>multiple interpretations</topic><topic>Object detection</topic><topic>Outdoor</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><topic>Performance evaluation</topic><topic>Pixel</topic><topic>Segmentation</topic><topic>Streaming media</topic><topic>Surveillance</topic><topic>surveillance systems</topic><topic>Video sequences</topic><topic>Video surveillance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nascimento, J.C.</creatorcontrib><creatorcontrib>Marques, J.S.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on multimedia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Nascimento, J.C.</au><au>Marques, J.S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Performance evaluation of object detection algorithms for video surveillance</atitle><jtitle>IEEE transactions on multimedia</jtitle><stitle>TMM</stitle><date>2006-08-01</date><risdate>2006</risdate><volume>8</volume><issue>4</issue><spage>761</spage><epage>774</epage><pages>761-774</pages><issn>1520-9210</issn><eissn>1941-0077</eissn><coden>ITMUF8</coden><abstract>In this paper, we propose novel methods to evaluate the performance of object detection algorithms in video sequences. This procedure allows us to highlight characteristics (e.g., region splitting or merging) which are specific of the method being used. The proposed framework compares the output of the algorithm with the ground truth and measures the differences according to objective metrics. In this way it is possible to perform a fair comparison among different methods, evaluating their strengths and weaknesses and allowing the user to perform a reliable choice of the best method for a specific application. We apply this methodology to segmentation algorithms recently proposed and describe their performance. These methods were evaluated in order to assess how well they can detect moving regions in an outdoor scene in fixed-camera situations</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TMM.2006.876287</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1520-9210
ispartof IEEE transactions on multimedia, 2006-08, Vol.8 (4), p.761-774
issn 1520-9210
1941-0077
language eng
recordid cdi_proquest_journals_866390601
source IEEE Electronic Library (IEL)
subjects Algorithms
Applied sciences
Artificial intelligence
Computer science
control theory
systems
Data mining
Exact sciences and technology
Ground truth
Image segmentation
Layout
Merging
metrics
Multimedia
multiple interpretations
Object detection
Outdoor
Pattern recognition. Digital image processing. Computational geometry
Performance evaluation
Pixel
Segmentation
Streaming media
Surveillance
surveillance systems
Video sequences
Video surveillance
title Performance evaluation of object detection algorithms for video surveillance
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T12%3A07%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Performance%20evaluation%20of%20object%20detection%20algorithms%20for%20video%20surveillance&rft.jtitle=IEEE%20transactions%20on%20multimedia&rft.au=Nascimento,%20J.C.&rft.date=2006-08-01&rft.volume=8&rft.issue=4&rft.spage=761&rft.epage=774&rft.pages=761-774&rft.issn=1520-9210&rft.eissn=1941-0077&rft.coden=ITMUF8&rft_id=info:doi/10.1109/TMM.2006.876287&rft_dat=%3Cproquest_RIE%3E896228584%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=866390601&rft_id=info:pmid/&rft_ieee_id=1658038&rfr_iscdi=true