Performance evaluation of object detection algorithms for video surveillance
In this paper, we propose novel methods to evaluate the performance of object detection algorithms in video sequences. This procedure allows us to highlight characteristics (e.g., region splitting or merging) which are specific of the method being used. The proposed framework compares the output of...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on multimedia 2006-08, Vol.8 (4), p.761-774 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 774 |
---|---|
container_issue | 4 |
container_start_page | 761 |
container_title | IEEE transactions on multimedia |
container_volume | 8 |
creator | Nascimento, J.C. Marques, J.S. |
description | In this paper, we propose novel methods to evaluate the performance of object detection algorithms in video sequences. This procedure allows us to highlight characteristics (e.g., region splitting or merging) which are specific of the method being used. The proposed framework compares the output of the algorithm with the ground truth and measures the differences according to objective metrics. In this way it is possible to perform a fair comparison among different methods, evaluating their strengths and weaknesses and allowing the user to perform a reliable choice of the best method for a specific application. We apply this methodology to segmentation algorithms recently proposed and describe their performance. These methods were evaluated in order to assess how well they can detect moving regions in an outdoor scene in fixed-camera situations |
doi_str_mv | 10.1109/TMM.2006.876287 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_866390601</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1658038</ieee_id><sourcerecordid>896228584</sourcerecordid><originalsourceid>FETCH-LOGICAL-c391t-ab881d4441fe4288e57af4edc060300d3d0f561fce18e48f321d9141dece86b73</originalsourceid><addsrcrecordid>eNpdkM1LAzEQxRdRsFbPHrwsgnjadmY3m2SPIn5Bix7qOaTZiW7ZNjXZLfjfm6WFgqcZJr_3ZvKS5BphggjVdDGfT3IAPpGC51KcJCOsGGYAQpzGvswhq3KE8-QihBUAshLEKJl9kLfOr_XGUEo73fa6a9wmdTZ1yxWZLq2pi2WY6fbL-ab7Xoc0StJdU5NLQ-931LTtYHCZnFndBro61HHy-fy0eHzNZu8vb48Ps8wUFXaZXkqJNWMMLbFcSiqFtoxqAxwKgLqowZYcrSGUxKQtcqwrZFiTIcmXohgn93vfrXc_PYVOrZtgaDiCXB-UrHiey1KySN7-I1eu95t4nJKcF1XciBGa7iHjXQierNr6Zq39r0JQQ7YqZquGbNU-26i4O9jqYHRrffx9E44yUZWSC4jczZ5riOj4zEsJhSz-AI0xgko</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>866390601</pqid></control><display><type>article</type><title>Performance evaluation of object detection algorithms for video surveillance</title><source>IEEE Electronic Library (IEL)</source><creator>Nascimento, J.C. ; Marques, J.S.</creator><creatorcontrib>Nascimento, J.C. ; Marques, J.S.</creatorcontrib><description>In this paper, we propose novel methods to evaluate the performance of object detection algorithms in video sequences. This procedure allows us to highlight characteristics (e.g., region splitting or merging) which are specific of the method being used. The proposed framework compares the output of the algorithm with the ground truth and measures the differences according to objective metrics. In this way it is possible to perform a fair comparison among different methods, evaluating their strengths and weaknesses and allowing the user to perform a reliable choice of the best method for a specific application. We apply this methodology to segmentation algorithms recently proposed and describe their performance. These methods were evaluated in order to assess how well they can detect moving regions in an outdoor scene in fixed-camera situations</description><identifier>ISSN: 1520-9210</identifier><identifier>EISSN: 1941-0077</identifier><identifier>DOI: 10.1109/TMM.2006.876287</identifier><identifier>CODEN: ITMUF8</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Algorithms ; Applied sciences ; Artificial intelligence ; Computer science; control theory; systems ; Data mining ; Exact sciences and technology ; Ground truth ; Image segmentation ; Layout ; Merging ; metrics ; Multimedia ; multiple interpretations ; Object detection ; Outdoor ; Pattern recognition. Digital image processing. Computational geometry ; Performance evaluation ; Pixel ; Segmentation ; Streaming media ; Surveillance ; surveillance systems ; Video sequences ; Video surveillance</subject><ispartof>IEEE transactions on multimedia, 2006-08, Vol.8 (4), p.761-774</ispartof><rights>2006 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2006</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c391t-ab881d4441fe4288e57af4edc060300d3d0f561fce18e48f321d9141dece86b73</citedby><cites>FETCH-LOGICAL-c391t-ab881d4441fe4288e57af4edc060300d3d0f561fce18e48f321d9141dece86b73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1658038$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1658038$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17958670$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Nascimento, J.C.</creatorcontrib><creatorcontrib>Marques, J.S.</creatorcontrib><title>Performance evaluation of object detection algorithms for video surveillance</title><title>IEEE transactions on multimedia</title><addtitle>TMM</addtitle><description>In this paper, we propose novel methods to evaluate the performance of object detection algorithms in video sequences. This procedure allows us to highlight characteristics (e.g., region splitting or merging) which are specific of the method being used. The proposed framework compares the output of the algorithm with the ground truth and measures the differences according to objective metrics. In this way it is possible to perform a fair comparison among different methods, evaluating their strengths and weaknesses and allowing the user to perform a reliable choice of the best method for a specific application. We apply this methodology to segmentation algorithms recently proposed and describe their performance. These methods were evaluated in order to assess how well they can detect moving regions in an outdoor scene in fixed-camera situations</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer science; control theory; systems</subject><subject>Data mining</subject><subject>Exact sciences and technology</subject><subject>Ground truth</subject><subject>Image segmentation</subject><subject>Layout</subject><subject>Merging</subject><subject>metrics</subject><subject>Multimedia</subject><subject>multiple interpretations</subject><subject>Object detection</subject><subject>Outdoor</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><subject>Performance evaluation</subject><subject>Pixel</subject><subject>Segmentation</subject><subject>Streaming media</subject><subject>Surveillance</subject><subject>surveillance systems</subject><subject>Video sequences</subject><subject>Video surveillance</subject><issn>1520-9210</issn><issn>1941-0077</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkM1LAzEQxRdRsFbPHrwsgnjadmY3m2SPIn5Bix7qOaTZiW7ZNjXZLfjfm6WFgqcZJr_3ZvKS5BphggjVdDGfT3IAPpGC51KcJCOsGGYAQpzGvswhq3KE8-QihBUAshLEKJl9kLfOr_XGUEo73fa6a9wmdTZ1yxWZLq2pi2WY6fbL-ab7Xoc0StJdU5NLQ-931LTtYHCZnFndBro61HHy-fy0eHzNZu8vb48Ps8wUFXaZXkqJNWMMLbFcSiqFtoxqAxwKgLqowZYcrSGUxKQtcqwrZFiTIcmXohgn93vfrXc_PYVOrZtgaDiCXB-UrHiey1KySN7-I1eu95t4nJKcF1XciBGa7iHjXQierNr6Zq39r0JQQ7YqZquGbNU-26i4O9jqYHRrffx9E44yUZWSC4jczZ5riOj4zEsJhSz-AI0xgko</recordid><startdate>20060801</startdate><enddate>20060801</enddate><creator>Nascimento, J.C.</creator><creator>Marques, J.S.</creator><general>IEEE</general><general>Institute of Electrical and Electronic Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20060801</creationdate><title>Performance evaluation of object detection algorithms for video surveillance</title><author>Nascimento, J.C. ; Marques, J.S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c391t-ab881d4441fe4288e57af4edc060300d3d0f561fce18e48f321d9141dece86b73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer science; control theory; systems</topic><topic>Data mining</topic><topic>Exact sciences and technology</topic><topic>Ground truth</topic><topic>Image segmentation</topic><topic>Layout</topic><topic>Merging</topic><topic>metrics</topic><topic>Multimedia</topic><topic>multiple interpretations</topic><topic>Object detection</topic><topic>Outdoor</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><topic>Performance evaluation</topic><topic>Pixel</topic><topic>Segmentation</topic><topic>Streaming media</topic><topic>Surveillance</topic><topic>surveillance systems</topic><topic>Video sequences</topic><topic>Video surveillance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nascimento, J.C.</creatorcontrib><creatorcontrib>Marques, J.S.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on multimedia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Nascimento, J.C.</au><au>Marques, J.S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Performance evaluation of object detection algorithms for video surveillance</atitle><jtitle>IEEE transactions on multimedia</jtitle><stitle>TMM</stitle><date>2006-08-01</date><risdate>2006</risdate><volume>8</volume><issue>4</issue><spage>761</spage><epage>774</epage><pages>761-774</pages><issn>1520-9210</issn><eissn>1941-0077</eissn><coden>ITMUF8</coden><abstract>In this paper, we propose novel methods to evaluate the performance of object detection algorithms in video sequences. This procedure allows us to highlight characteristics (e.g., region splitting or merging) which are specific of the method being used. The proposed framework compares the output of the algorithm with the ground truth and measures the differences according to objective metrics. In this way it is possible to perform a fair comparison among different methods, evaluating their strengths and weaknesses and allowing the user to perform a reliable choice of the best method for a specific application. We apply this methodology to segmentation algorithms recently proposed and describe their performance. These methods were evaluated in order to assess how well they can detect moving regions in an outdoor scene in fixed-camera situations</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TMM.2006.876287</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1520-9210 |
ispartof | IEEE transactions on multimedia, 2006-08, Vol.8 (4), p.761-774 |
issn | 1520-9210 1941-0077 |
language | eng |
recordid | cdi_proquest_journals_866390601 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Applied sciences Artificial intelligence Computer science control theory systems Data mining Exact sciences and technology Ground truth Image segmentation Layout Merging metrics Multimedia multiple interpretations Object detection Outdoor Pattern recognition. Digital image processing. Computational geometry Performance evaluation Pixel Segmentation Streaming media Surveillance surveillance systems Video sequences Video surveillance |
title | Performance evaluation of object detection algorithms for video surveillance |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T12%3A07%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Performance%20evaluation%20of%20object%20detection%20algorithms%20for%20video%20surveillance&rft.jtitle=IEEE%20transactions%20on%20multimedia&rft.au=Nascimento,%20J.C.&rft.date=2006-08-01&rft.volume=8&rft.issue=4&rft.spage=761&rft.epage=774&rft.pages=761-774&rft.issn=1520-9210&rft.eissn=1941-0077&rft.coden=ITMUF8&rft_id=info:doi/10.1109/TMM.2006.876287&rft_dat=%3Cproquest_RIE%3E896228584%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=866390601&rft_id=info:pmid/&rft_ieee_id=1658038&rfr_iscdi=true |