Component optimization for image understanding: a Bayesian approach

In this paper, the optimizations of three fundamental components of image understanding: segmentation/annotation, 3D sensing (stereo) and 3D fitting, are posed and integrated within a Bayesian framework. This approach benefits from recent advances in statistical learning which have resulted in great...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence 2006-05, Vol.28 (5), p.684-693
Hauptverfasser: Li Cheng, Caelli, T., Sanchez-Azofeifa, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 693
container_issue 5
container_start_page 684
container_title IEEE transactions on pattern analysis and machine intelligence
container_volume 28
creator Li Cheng
Caelli, T.
Sanchez-Azofeifa, A.
description In this paper, the optimizations of three fundamental components of image understanding: segmentation/annotation, 3D sensing (stereo) and 3D fitting, are posed and integrated within a Bayesian framework. This approach benefits from recent advances in statistical learning which have resulted in greatly improved flexibility and robustness. The first two components produce annotation (region labeling) and depth maps for the input images, while the third module integrates and resolves the inconsistencies between region labels and depth maps to fit most likely 3D models. To illustrate the application of these ideas, we have focused on the difficult problem of fitting individual tree models to tree stands which is a major challenge for vision-based forestry inventory systems.
doi_str_mv 10.1109/TPAMI.2006.92
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_865734066</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1608033</ieee_id><sourcerecordid>67910140</sourcerecordid><originalsourceid>FETCH-LOGICAL-c431t-46cdda73c01eba9ac722849857307c8f69640ff66e351637d8e2332bd2c7fc843</originalsourceid><addsrcrecordid>eNqF0T1vFDEQBmALgcgRKKmQ0AqJUO0x_tixTRdOASIFQRFqy-f1Bke39mLvFuHX4-NOCqKAys2jdzzzEvKcwppS0G-vv55_vlwzAFxr9oCsqOa65R3XD8kKKLJWKaZOyJNSbgGo6IA_JicUUQDrcEU2mzROKfo4N2mawxh-2jmk2AwpN2G0N75ZYu9zmW3sQ7x519jmvb3zJdjY2GnKybrvT8mjwe6Kf3Z8T8m3DxfXm0_t1ZePl5vzq9YJTudWoOt7K7kD6rdWWycZU0KrTnKQTg2o66eGAdHzjiKXvfKMc7btmZODU4KfkjeH3Dr2x-LLbMZQnN_tbPRpKUZpZECllFWe_VOi1LQeA_4LmdRaaIEVvvoL3qYlx7quUVg3EIB71B6Qy6mU7Acz5XrEfGcomH1b5ndbZt-W0az6l8fQZTv6_l4f66ng9RHY4uxuyDa6UO6dRIlU6epeHFzw3v8RAwo4578APaujkw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>865734066</pqid></control><display><type>article</type><title>Component optimization for image understanding: a Bayesian approach</title><source>IEEE Electronic Library (IEL)</source><creator>Li Cheng ; Caelli, T. ; Sanchez-Azofeifa, A.</creator><creatorcontrib>Li Cheng ; Caelli, T. ; Sanchez-Azofeifa, A.</creatorcontrib><description>In this paper, the optimizations of three fundamental components of image understanding: segmentation/annotation, 3D sensing (stereo) and 3D fitting, are posed and integrated within a Bayesian framework. This approach benefits from recent advances in statistical learning which have resulted in greatly improved flexibility and robustness. The first two components produce annotation (region labeling) and depth maps for the input images, while the third module integrates and resolves the inconsistencies between region labels and depth maps to fit most likely 3D models. To illustrate the application of these ideas, we have focused on the difficult problem of fitting individual tree models to tree stands which is a major challenge for vision-based forestry inventory systems.</description><identifier>ISSN: 0162-8828</identifier><identifier>EISSN: 1939-3539</identifier><identifier>DOI: 10.1109/TPAMI.2006.92</identifier><identifier>PMID: 16640256</identifier><identifier>CODEN: ITPIDJ</identifier><language>eng</language><publisher>Los Alamitos, CA: IEEE</publisher><subject>3D fitting ; Agronomy. Soil science and plant productions ; Algorithms ; Annotations ; Applied sciences ; Artificial Intelligence ; Bayes Theorem ; Bayesian analysis ; Bayesian methods ; Biological and medical sciences ; Computer science; control theory; systems ; Delay estimation ; Exact sciences and technology ; Fittings ; Forestry ; forestry inventory ; Fundamental and applied biological sciences. Psychology ; General agronomy. Plant production ; Geometry ; Image Enhancement - methods ; Image Interpretation, Computer-Assisted - methods ; Image reconstruction ; Image segmentation ; image understanding ; Imaging, Three-Dimensional - methods ; Information Storage and Retrieval - methods ; Labeling ; Layout ; Models, Statistical ; Optimization ; Pattern Recognition, Automated - methods ; Pattern recognition. Digital image processing. Computational geometry ; Robustness ; scene analysis ; Segmentation ; Statistical learning ; stereo ; Three dimensional ; Trees</subject><ispartof>IEEE transactions on pattern analysis and machine intelligence, 2006-05, Vol.28 (5), p.684-693</ispartof><rights>2006 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c431t-46cdda73c01eba9ac722849857307c8f69640ff66e351637d8e2332bd2c7fc843</citedby><cites>FETCH-LOGICAL-c431t-46cdda73c01eba9ac722849857307c8f69640ff66e351637d8e2332bd2c7fc843</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1608033$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1608033$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17676189$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16640256$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li Cheng</creatorcontrib><creatorcontrib>Caelli, T.</creatorcontrib><creatorcontrib>Sanchez-Azofeifa, A.</creatorcontrib><title>Component optimization for image understanding: a Bayesian approach</title><title>IEEE transactions on pattern analysis and machine intelligence</title><addtitle>TPAMI</addtitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><description>In this paper, the optimizations of three fundamental components of image understanding: segmentation/annotation, 3D sensing (stereo) and 3D fitting, are posed and integrated within a Bayesian framework. This approach benefits from recent advances in statistical learning which have resulted in greatly improved flexibility and robustness. The first two components produce annotation (region labeling) and depth maps for the input images, while the third module integrates and resolves the inconsistencies between region labels and depth maps to fit most likely 3D models. To illustrate the application of these ideas, we have focused on the difficult problem of fitting individual tree models to tree stands which is a major challenge for vision-based forestry inventory systems.</description><subject>3D fitting</subject><subject>Agronomy. Soil science and plant productions</subject><subject>Algorithms</subject><subject>Annotations</subject><subject>Applied sciences</subject><subject>Artificial Intelligence</subject><subject>Bayes Theorem</subject><subject>Bayesian analysis</subject><subject>Bayesian methods</subject><subject>Biological and medical sciences</subject><subject>Computer science; control theory; systems</subject><subject>Delay estimation</subject><subject>Exact sciences and technology</subject><subject>Fittings</subject><subject>Forestry</subject><subject>forestry inventory</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General agronomy. Plant production</subject><subject>Geometry</subject><subject>Image Enhancement - methods</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>Image reconstruction</subject><subject>Image segmentation</subject><subject>image understanding</subject><subject>Imaging, Three-Dimensional - methods</subject><subject>Information Storage and Retrieval - methods</subject><subject>Labeling</subject><subject>Layout</subject><subject>Models, Statistical</subject><subject>Optimization</subject><subject>Pattern Recognition, Automated - methods</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><subject>Robustness</subject><subject>scene analysis</subject><subject>Segmentation</subject><subject>Statistical learning</subject><subject>stereo</subject><subject>Three dimensional</subject><subject>Trees</subject><issn>0162-8828</issn><issn>1939-3539</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNqF0T1vFDEQBmALgcgRKKmQ0AqJUO0x_tixTRdOASIFQRFqy-f1Bke39mLvFuHX4-NOCqKAys2jdzzzEvKcwppS0G-vv55_vlwzAFxr9oCsqOa65R3XD8kKKLJWKaZOyJNSbgGo6IA_JicUUQDrcEU2mzROKfo4N2mawxh-2jmk2AwpN2G0N75ZYu9zmW3sQ7x519jmvb3zJdjY2GnKybrvT8mjwe6Kf3Z8T8m3DxfXm0_t1ZePl5vzq9YJTudWoOt7K7kD6rdWWycZU0KrTnKQTg2o66eGAdHzjiKXvfKMc7btmZODU4KfkjeH3Dr2x-LLbMZQnN_tbPRpKUZpZECllFWe_VOi1LQeA_4LmdRaaIEVvvoL3qYlx7quUVg3EIB71B6Qy6mU7Acz5XrEfGcomH1b5ndbZt-W0az6l8fQZTv6_l4f66ng9RHY4uxuyDa6UO6dRIlU6epeHFzw3v8RAwo4578APaujkw</recordid><startdate>20060501</startdate><enddate>20060501</enddate><creator>Li Cheng</creator><creator>Caelli, T.</creator><creator>Sanchez-Azofeifa, A.</creator><general>IEEE</general><general>IEEE Computer Society</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20060501</creationdate><title>Component optimization for image understanding: a Bayesian approach</title><author>Li Cheng ; Caelli, T. ; Sanchez-Azofeifa, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c431t-46cdda73c01eba9ac722849857307c8f69640ff66e351637d8e2332bd2c7fc843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>3D fitting</topic><topic>Agronomy. Soil science and plant productions</topic><topic>Algorithms</topic><topic>Annotations</topic><topic>Applied sciences</topic><topic>Artificial Intelligence</topic><topic>Bayes Theorem</topic><topic>Bayesian analysis</topic><topic>Bayesian methods</topic><topic>Biological and medical sciences</topic><topic>Computer science; control theory; systems</topic><topic>Delay estimation</topic><topic>Exact sciences and technology</topic><topic>Fittings</topic><topic>Forestry</topic><topic>forestry inventory</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General agronomy. Plant production</topic><topic>Geometry</topic><topic>Image Enhancement - methods</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>Image reconstruction</topic><topic>Image segmentation</topic><topic>image understanding</topic><topic>Imaging, Three-Dimensional - methods</topic><topic>Information Storage and Retrieval - methods</topic><topic>Labeling</topic><topic>Layout</topic><topic>Models, Statistical</topic><topic>Optimization</topic><topic>Pattern Recognition, Automated - methods</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><topic>Robustness</topic><topic>scene analysis</topic><topic>Segmentation</topic><topic>Statistical learning</topic><topic>stereo</topic><topic>Three dimensional</topic><topic>Trees</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li Cheng</creatorcontrib><creatorcontrib>Caelli, T.</creatorcontrib><creatorcontrib>Sanchez-Azofeifa, A.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Li Cheng</au><au>Caelli, T.</au><au>Sanchez-Azofeifa, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Component optimization for image understanding: a Bayesian approach</atitle><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle><stitle>TPAMI</stitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><date>2006-05-01</date><risdate>2006</risdate><volume>28</volume><issue>5</issue><spage>684</spage><epage>693</epage><pages>684-693</pages><issn>0162-8828</issn><eissn>1939-3539</eissn><coden>ITPIDJ</coden><abstract>In this paper, the optimizations of three fundamental components of image understanding: segmentation/annotation, 3D sensing (stereo) and 3D fitting, are posed and integrated within a Bayesian framework. This approach benefits from recent advances in statistical learning which have resulted in greatly improved flexibility and robustness. The first two components produce annotation (region labeling) and depth maps for the input images, while the third module integrates and resolves the inconsistencies between region labels and depth maps to fit most likely 3D models. To illustrate the application of these ideas, we have focused on the difficult problem of fitting individual tree models to tree stands which is a major challenge for vision-based forestry inventory systems.</abstract><cop>Los Alamitos, CA</cop><pub>IEEE</pub><pmid>16640256</pmid><doi>10.1109/TPAMI.2006.92</doi><tpages>10</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0162-8828
ispartof IEEE transactions on pattern analysis and machine intelligence, 2006-05, Vol.28 (5), p.684-693
issn 0162-8828
1939-3539
language eng
recordid cdi_proquest_journals_865734066
source IEEE Electronic Library (IEL)
subjects 3D fitting
Agronomy. Soil science and plant productions
Algorithms
Annotations
Applied sciences
Artificial Intelligence
Bayes Theorem
Bayesian analysis
Bayesian methods
Biological and medical sciences
Computer science
control theory
systems
Delay estimation
Exact sciences and technology
Fittings
Forestry
forestry inventory
Fundamental and applied biological sciences. Psychology
General agronomy. Plant production
Geometry
Image Enhancement - methods
Image Interpretation, Computer-Assisted - methods
Image reconstruction
Image segmentation
image understanding
Imaging, Three-Dimensional - methods
Information Storage and Retrieval - methods
Labeling
Layout
Models, Statistical
Optimization
Pattern Recognition, Automated - methods
Pattern recognition. Digital image processing. Computational geometry
Robustness
scene analysis
Segmentation
Statistical learning
stereo
Three dimensional
Trees
title Component optimization for image understanding: a Bayesian approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T01%3A35%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Component%20optimization%20for%20image%20understanding:%20a%20Bayesian%20approach&rft.jtitle=IEEE%20transactions%20on%20pattern%20analysis%20and%20machine%20intelligence&rft.au=Li%20Cheng&rft.date=2006-05-01&rft.volume=28&rft.issue=5&rft.spage=684&rft.epage=693&rft.pages=684-693&rft.issn=0162-8828&rft.eissn=1939-3539&rft.coden=ITPIDJ&rft_id=info:doi/10.1109/TPAMI.2006.92&rft_dat=%3Cproquest_RIE%3E67910140%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=865734066&rft_id=info:pmid/16640256&rft_ieee_id=1608033&rfr_iscdi=true