Statistical analysis of dynamic actions

Real-world action recognition applications require the development of systems which are fast, can handle a large variety of actions without a priori knowledge of the type of actions, need a minimal number of parameters, and necessitate as short as possible learning stage. In this paper, we suggest s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence 2006-09, Vol.28 (9), p.1530-1535
Hauptverfasser: Zelnik-Manor, L., Irani, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1535
container_issue 9
container_start_page 1530
container_title IEEE transactions on pattern analysis and machine intelligence
container_volume 28
creator Zelnik-Manor, L.
Irani, M.
description Real-world action recognition applications require the development of systems which are fast, can handle a large variety of actions without a priori knowledge of the type of actions, need a minimal number of parameters, and necessitate as short as possible learning stage. In this paper, we suggest such an approach. We regard dynamic activities as long-term temporal objects, which are characterized by spatio-temporal features at multiple temporal scales. Based on this, we design a simple statistical distance measure between video sequences which captures the similarities in their behavioral content. This measure is nonparametric and can thus handle a wide range of complex dynamic actions. Having a behavior-based distance measure between sequences, we use it for a variety of tasks, including: video indexing, temporal segmentation, and action-based video clustering. These tasks are performed without prior knowledge of the types of actions, their models, or their temporal extents
doi_str_mv 10.1109/TPAMI.2006.194
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_865710220</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1661555</ieee_id><sourcerecordid>68784752</sourcerecordid><originalsourceid>FETCH-LOGICAL-c442t-8181174278df13d270922600d3cf7dbb9e9ca455c813582065ca2e20be8c3c3f3</originalsourceid><addsrcrecordid>eNp90c1LwzAYx_EgipvTqxdBhqCeOp8nad6OY_gymCg4zyVLU8jo2tm0h_33Zm4w8eApl09-kG8IuUQYIYJ-mL-PX6cjCiBGqNMj0kfNdMI408ekDyhoohRVPXIWwhIAUw7slPRQaKol031y_9Ga1ofWW1MOTWXKTfBhWBfDfFOZlbdDY1tfV-GcnBSmDO5ifw7I59PjfPKSzN6ep5PxLLFpSttEoUKUKZUqL5DlVIKmVADkzBYyXyy009aknFuFjCsKgltDHYWFU5ZZVrABud_trpv6q3OhzVY-WFeWpnJ1FzKlRXwhgojy7l8plFSp5DTCmz9wWXdNfGpcE1wiUAoRjXbINnUIjSuydeNXptlkCNm2dPZTOtuWzmLpeOF6v9otVi4_8H3aCG73wIQYt2hMZX04OBW_Q8utu9o575z7NSOQc86-AcNoi9Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>865710220</pqid></control><display><type>article</type><title>Statistical analysis of dynamic actions</title><source>IEEE Electronic Library (IEL)</source><creator>Zelnik-Manor, L. ; Irani, M.</creator><creatorcontrib>Zelnik-Manor, L. ; Irani, M.</creatorcontrib><description>Real-world action recognition applications require the development of systems which are fast, can handle a large variety of actions without a priori knowledge of the type of actions, need a minimal number of parameters, and necessitate as short as possible learning stage. In this paper, we suggest such an approach. We regard dynamic activities as long-term temporal objects, which are characterized by spatio-temporal features at multiple temporal scales. Based on this, we design a simple statistical distance measure between video sequences which captures the similarities in their behavioral content. This measure is nonparametric and can thus handle a wide range of complex dynamic actions. Having a behavior-based distance measure between sequences, we use it for a variety of tasks, including: video indexing, temporal segmentation, and action-based video clustering. These tasks are performed without prior knowledge of the types of actions, their models, or their temporal extents</description><identifier>ISSN: 0162-8828</identifier><identifier>EISSN: 1939-3539</identifier><identifier>EISSN: 2160-9292</identifier><identifier>DOI: 10.1109/TPAMI.2006.194</identifier><identifier>PMID: 16929739</identifier><identifier>CODEN: ITPIDJ</identifier><language>eng</language><publisher>Los Alamitos, CA: IEEE</publisher><subject>Action recognition ; Algorithms ; Applied sciences ; Artificial Intelligence ; Computer science; control theory; systems ; Dynamic range ; Dynamic tests ; Dynamical systems ; Dynamics ; Exact sciences and technology ; Face recognition ; Handles ; Humans ; Image Enhancement - methods ; Image Interpretation, Computer-Assisted - methods ; Image recognition ; Image segmentation ; Indexing ; Information analysis ; Information Storage and Retrieval - methods ; Kinetics ; Learning ; Motion pictures ; Movement - physiology ; Parametric statistics ; Pattern Recognition, Automated - methods ; Pattern recognition. Digital image processing. Computational geometry ; Statistical analysis ; Tasks ; Temporal logic ; temporal segmentation ; video indexing ; Video Recording - methods ; Video sequences ; Walking - physiology</subject><ispartof>IEEE transactions on pattern analysis and machine intelligence, 2006-09, Vol.28 (9), p.1530-1535</ispartof><rights>2006 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2006</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c442t-8181174278df13d270922600d3cf7dbb9e9ca455c813582065ca2e20be8c3c3f3</citedby><cites>FETCH-LOGICAL-c442t-8181174278df13d270922600d3cf7dbb9e9ca455c813582065ca2e20be8c3c3f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1661555$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1661555$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18001979$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16929739$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zelnik-Manor, L.</creatorcontrib><creatorcontrib>Irani, M.</creatorcontrib><title>Statistical analysis of dynamic actions</title><title>IEEE transactions on pattern analysis and machine intelligence</title><addtitle>TPAMI</addtitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><description>Real-world action recognition applications require the development of systems which are fast, can handle a large variety of actions without a priori knowledge of the type of actions, need a minimal number of parameters, and necessitate as short as possible learning stage. In this paper, we suggest such an approach. We regard dynamic activities as long-term temporal objects, which are characterized by spatio-temporal features at multiple temporal scales. Based on this, we design a simple statistical distance measure between video sequences which captures the similarities in their behavioral content. This measure is nonparametric and can thus handle a wide range of complex dynamic actions. Having a behavior-based distance measure between sequences, we use it for a variety of tasks, including: video indexing, temporal segmentation, and action-based video clustering. These tasks are performed without prior knowledge of the types of actions, their models, or their temporal extents</description><subject>Action recognition</subject><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Artificial Intelligence</subject><subject>Computer science; control theory; systems</subject><subject>Dynamic range</subject><subject>Dynamic tests</subject><subject>Dynamical systems</subject><subject>Dynamics</subject><subject>Exact sciences and technology</subject><subject>Face recognition</subject><subject>Handles</subject><subject>Humans</subject><subject>Image Enhancement - methods</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>Image recognition</subject><subject>Image segmentation</subject><subject>Indexing</subject><subject>Information analysis</subject><subject>Information Storage and Retrieval - methods</subject><subject>Kinetics</subject><subject>Learning</subject><subject>Motion pictures</subject><subject>Movement - physiology</subject><subject>Parametric statistics</subject><subject>Pattern Recognition, Automated - methods</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><subject>Statistical analysis</subject><subject>Tasks</subject><subject>Temporal logic</subject><subject>temporal segmentation</subject><subject>video indexing</subject><subject>Video Recording - methods</subject><subject>Video sequences</subject><subject>Walking - physiology</subject><issn>0162-8828</issn><issn>1939-3539</issn><issn>2160-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNp90c1LwzAYx_EgipvTqxdBhqCeOp8nad6OY_gymCg4zyVLU8jo2tm0h_33Zm4w8eApl09-kG8IuUQYIYJ-mL-PX6cjCiBGqNMj0kfNdMI408ekDyhoohRVPXIWwhIAUw7slPRQaKol031y_9Ga1ofWW1MOTWXKTfBhWBfDfFOZlbdDY1tfV-GcnBSmDO5ifw7I59PjfPKSzN6ep5PxLLFpSttEoUKUKZUqL5DlVIKmVADkzBYyXyy009aknFuFjCsKgltDHYWFU5ZZVrABud_trpv6q3OhzVY-WFeWpnJ1FzKlRXwhgojy7l8plFSp5DTCmz9wWXdNfGpcE1wiUAoRjXbINnUIjSuydeNXptlkCNm2dPZTOtuWzmLpeOF6v9otVi4_8H3aCG73wIQYt2hMZX04OBW_Q8utu9o575z7NSOQc86-AcNoi9Y</recordid><startdate>20060901</startdate><enddate>20060901</enddate><creator>Zelnik-Manor, L.</creator><creator>Irani, M.</creator><general>IEEE</general><general>IEEE Computer Society</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20060901</creationdate><title>Statistical analysis of dynamic actions</title><author>Zelnik-Manor, L. ; Irani, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c442t-8181174278df13d270922600d3cf7dbb9e9ca455c813582065ca2e20be8c3c3f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Action recognition</topic><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Artificial Intelligence</topic><topic>Computer science; control theory; systems</topic><topic>Dynamic range</topic><topic>Dynamic tests</topic><topic>Dynamical systems</topic><topic>Dynamics</topic><topic>Exact sciences and technology</topic><topic>Face recognition</topic><topic>Handles</topic><topic>Humans</topic><topic>Image Enhancement - methods</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>Image recognition</topic><topic>Image segmentation</topic><topic>Indexing</topic><topic>Information analysis</topic><topic>Information Storage and Retrieval - methods</topic><topic>Kinetics</topic><topic>Learning</topic><topic>Motion pictures</topic><topic>Movement - physiology</topic><topic>Parametric statistics</topic><topic>Pattern Recognition, Automated - methods</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><topic>Statistical analysis</topic><topic>Tasks</topic><topic>Temporal logic</topic><topic>temporal segmentation</topic><topic>video indexing</topic><topic>Video Recording - methods</topic><topic>Video sequences</topic><topic>Walking - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zelnik-Manor, L.</creatorcontrib><creatorcontrib>Irani, M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zelnik-Manor, L.</au><au>Irani, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Statistical analysis of dynamic actions</atitle><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle><stitle>TPAMI</stitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><date>2006-09-01</date><risdate>2006</risdate><volume>28</volume><issue>9</issue><spage>1530</spage><epage>1535</epage><pages>1530-1535</pages><issn>0162-8828</issn><eissn>1939-3539</eissn><eissn>2160-9292</eissn><coden>ITPIDJ</coden><abstract>Real-world action recognition applications require the development of systems which are fast, can handle a large variety of actions without a priori knowledge of the type of actions, need a minimal number of parameters, and necessitate as short as possible learning stage. In this paper, we suggest such an approach. We regard dynamic activities as long-term temporal objects, which are characterized by spatio-temporal features at multiple temporal scales. Based on this, we design a simple statistical distance measure between video sequences which captures the similarities in their behavioral content. This measure is nonparametric and can thus handle a wide range of complex dynamic actions. Having a behavior-based distance measure between sequences, we use it for a variety of tasks, including: video indexing, temporal segmentation, and action-based video clustering. These tasks are performed without prior knowledge of the types of actions, their models, or their temporal extents</abstract><cop>Los Alamitos, CA</cop><pub>IEEE</pub><pmid>16929739</pmid><doi>10.1109/TPAMI.2006.194</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0162-8828
ispartof IEEE transactions on pattern analysis and machine intelligence, 2006-09, Vol.28 (9), p.1530-1535
issn 0162-8828
1939-3539
2160-9292
language eng
recordid cdi_proquest_journals_865710220
source IEEE Electronic Library (IEL)
subjects Action recognition
Algorithms
Applied sciences
Artificial Intelligence
Computer science
control theory
systems
Dynamic range
Dynamic tests
Dynamical systems
Dynamics
Exact sciences and technology
Face recognition
Handles
Humans
Image Enhancement - methods
Image Interpretation, Computer-Assisted - methods
Image recognition
Image segmentation
Indexing
Information analysis
Information Storage and Retrieval - methods
Kinetics
Learning
Motion pictures
Movement - physiology
Parametric statistics
Pattern Recognition, Automated - methods
Pattern recognition. Digital image processing. Computational geometry
Statistical analysis
Tasks
Temporal logic
temporal segmentation
video indexing
Video Recording - methods
Video sequences
Walking - physiology
title Statistical analysis of dynamic actions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T10%3A06%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Statistical%20analysis%20of%20dynamic%20actions&rft.jtitle=IEEE%20transactions%20on%20pattern%20analysis%20and%20machine%20intelligence&rft.au=Zelnik-Manor,%20L.&rft.date=2006-09-01&rft.volume=28&rft.issue=9&rft.spage=1530&rft.epage=1535&rft.pages=1530-1535&rft.issn=0162-8828&rft.eissn=1939-3539&rft.coden=ITPIDJ&rft_id=info:doi/10.1109/TPAMI.2006.194&rft_dat=%3Cproquest_RIE%3E68784752%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=865710220&rft_id=info:pmid/16929739&rft_ieee_id=1661555&rfr_iscdi=true