Algorithm for global leaf area index retrieval using satellite imagery

Leaf area index (LAI) is one of the most important Earth surface parameters in modeling ecosystems and their interaction with climate. Based on a geometrical optical model (Four-Scale) and LAI algorithms previously derived for Canada-wide applications, this paper presents a new algorithm for the glo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on geoscience and remote sensing 2006-08, Vol.44 (8), p.2219-2229
Hauptverfasser: Feng Deng, Chen, J.M., Plummer, S., Mingzhen Chen, Pisek, J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2229
container_issue 8
container_start_page 2219
container_title IEEE transactions on geoscience and remote sensing
container_volume 44
creator Feng Deng
Chen, J.M.
Plummer, S.
Mingzhen Chen
Pisek, J.
description Leaf area index (LAI) is one of the most important Earth surface parameters in modeling ecosystems and their interaction with climate. Based on a geometrical optical model (Four-Scale) and LAI algorithms previously derived for Canada-wide applications, this paper presents a new algorithm for the global retrieval of LAI where the bidirectional reflectance distribution function (BRDF) is considered explicitly in the algorithm and hence removing the need of doing BRDF corrections and normalizations to the input images. The core problem of integrating BRDF into the LAI algorithm is that nonlinear BRDF kernels that are used to relate spectral reflectances to LAI are also LAI dependent, and no analytical solution is found to derive directly LAI from reflectance data. This problem is solved through developing a simple iteration procedure. The relationships between LAI and reflectances of various spectral bands (red, near infrared, and shortwave infrared) are simulated with Four-Scale with a multiple scattering scheme. Based on the model simulations, the key coefficients in the BRDF kernels are fitted with Chebyshev polynomials of the second kind. Spectral indices - the simple ratio and the reduced simple ratio - are used to effectively combine the spectral bands for LAI retrieval. Example regional and global LAI maps are produced. Accuracy assessment on a Canada-wide LAI map is made in comparison with a previously validated 1998 LAI map and ground measurements made in seven Landsat scenes
doi_str_mv 10.1109/TGRS.2006.872100
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_865683107</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1661810</ieee_id><sourcerecordid>880673216</sourcerecordid><originalsourceid>FETCH-LOGICAL-c460t-b2f14e40cedc794843688f0adb822c0eaa5f50e8fa7d2e683c0f5304c4199da43</originalsourceid><addsrcrecordid>eNpdkMFLwzAUxoMoOKd3wUsRxFPnS5qm6XEMN4WBoPMcsvSlZnTtTDpx_70tHQw8vcP3-7733kfILYUJpZA_rRbvHxMGICYyYxTgjIxomsoYBOfnZAQ0FzGTObskVyFsAChPaTYi82lVNt61X9vINj4qq2atq6hCbSPtUUeuLvA38th6hz-dsg-uLqOgW6wq12LktrpEf7gmF1ZXAW-Oc0w-58-r2Uu8fFu8zqbL2HABbbxmlnLkYLAwWc4lT4SUFnSxlowZQK1TmwJKq7OCoZCJAZsmwA2neV5onozJ45C78833HkOrti6Y7hZdY7MPSkoQWcKo6Mj7f-Sm2fu6O05JkXbRFLIOggEyvgnBo1U7333kD4qC6mtVfa2qr1UNtXaWh2OuDkZX1uvauHDyZbnMU9Hvvxs4h4gnWQgqKSR_PpiAFQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>865683107</pqid></control><display><type>article</type><title>Algorithm for global leaf area index retrieval using satellite imagery</title><source>IEEE Electronic Library (IEL)</source><creator>Feng Deng ; Chen, J.M. ; Plummer, S. ; Mingzhen Chen ; Pisek, J.</creator><creatorcontrib>Feng Deng ; Chen, J.M. ; Plummer, S. ; Mingzhen Chen ; Pisek, J.</creatorcontrib><description>Leaf area index (LAI) is one of the most important Earth surface parameters in modeling ecosystems and their interaction with climate. Based on a geometrical optical model (Four-Scale) and LAI algorithms previously derived for Canada-wide applications, this paper presents a new algorithm for the global retrieval of LAI where the bidirectional reflectance distribution function (BRDF) is considered explicitly in the algorithm and hence removing the need of doing BRDF corrections and normalizations to the input images. The core problem of integrating BRDF into the LAI algorithm is that nonlinear BRDF kernels that are used to relate spectral reflectances to LAI are also LAI dependent, and no analytical solution is found to derive directly LAI from reflectance data. This problem is solved through developing a simple iteration procedure. The relationships between LAI and reflectances of various spectral bands (red, near infrared, and shortwave infrared) are simulated with Four-Scale with a multiple scattering scheme. Based on the model simulations, the key coefficients in the BRDF kernels are fitted with Chebyshev polynomials of the second kind. Spectral indices - the simple ratio and the reduced simple ratio - are used to effectively combine the spectral bands for LAI retrieval. Example regional and global LAI maps are produced. Accuracy assessment on a Canada-wide LAI map is made in comparison with a previously validated 1998 LAI map and ground measurements made in seven Landsat scenes</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2006.872100</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Algorithms ; Applied geophysics ; Bidirectional reflectance distribution function (BRDF) ; Chebyshev polynomials ; Computer simulation ; Earth ; Earth sciences ; Earth, ocean, space ; Ecosystems ; Exact sciences and technology ; geometrical optical (GO) model ; Geometrical optics ; Image retrieval ; Infrared spectra ; Internal geophysics ; Kernel ; Leaf area index ; leaf area index (LAI) ; lookup table (LUT) ; Mathematical models ; Nonlinear optics ; Optical scattering ; Remote sensing ; Retrieval ; Satellites ; Solid modeling ; Spectra ; Spectral bands ; Studies</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2006-08, Vol.44 (8), p.2219-2229</ispartof><rights>2007 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2006</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c460t-b2f14e40cedc794843688f0adb822c0eaa5f50e8fa7d2e683c0f5304c4199da43</citedby><cites>FETCH-LOGICAL-c460t-b2f14e40cedc794843688f0adb822c0eaa5f50e8fa7d2e683c0f5304c4199da43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1661810$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1661810$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17989566$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Feng Deng</creatorcontrib><creatorcontrib>Chen, J.M.</creatorcontrib><creatorcontrib>Plummer, S.</creatorcontrib><creatorcontrib>Mingzhen Chen</creatorcontrib><creatorcontrib>Pisek, J.</creatorcontrib><title>Algorithm for global leaf area index retrieval using satellite imagery</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>Leaf area index (LAI) is one of the most important Earth surface parameters in modeling ecosystems and their interaction with climate. Based on a geometrical optical model (Four-Scale) and LAI algorithms previously derived for Canada-wide applications, this paper presents a new algorithm for the global retrieval of LAI where the bidirectional reflectance distribution function (BRDF) is considered explicitly in the algorithm and hence removing the need of doing BRDF corrections and normalizations to the input images. The core problem of integrating BRDF into the LAI algorithm is that nonlinear BRDF kernels that are used to relate spectral reflectances to LAI are also LAI dependent, and no analytical solution is found to derive directly LAI from reflectance data. This problem is solved through developing a simple iteration procedure. The relationships between LAI and reflectances of various spectral bands (red, near infrared, and shortwave infrared) are simulated with Four-Scale with a multiple scattering scheme. Based on the model simulations, the key coefficients in the BRDF kernels are fitted with Chebyshev polynomials of the second kind. Spectral indices - the simple ratio and the reduced simple ratio - are used to effectively combine the spectral bands for LAI retrieval. Example regional and global LAI maps are produced. Accuracy assessment on a Canada-wide LAI map is made in comparison with a previously validated 1998 LAI map and ground measurements made in seven Landsat scenes</description><subject>Algorithms</subject><subject>Applied geophysics</subject><subject>Bidirectional reflectance distribution function (BRDF)</subject><subject>Chebyshev polynomials</subject><subject>Computer simulation</subject><subject>Earth</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Ecosystems</subject><subject>Exact sciences and technology</subject><subject>geometrical optical (GO) model</subject><subject>Geometrical optics</subject><subject>Image retrieval</subject><subject>Infrared spectra</subject><subject>Internal geophysics</subject><subject>Kernel</subject><subject>Leaf area index</subject><subject>leaf area index (LAI)</subject><subject>lookup table (LUT)</subject><subject>Mathematical models</subject><subject>Nonlinear optics</subject><subject>Optical scattering</subject><subject>Remote sensing</subject><subject>Retrieval</subject><subject>Satellites</subject><subject>Solid modeling</subject><subject>Spectra</subject><subject>Spectral bands</subject><subject>Studies</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkMFLwzAUxoMoOKd3wUsRxFPnS5qm6XEMN4WBoPMcsvSlZnTtTDpx_70tHQw8vcP3-7733kfILYUJpZA_rRbvHxMGICYyYxTgjIxomsoYBOfnZAQ0FzGTObskVyFsAChPaTYi82lVNt61X9vINj4qq2atq6hCbSPtUUeuLvA38th6hz-dsg-uLqOgW6wq12LktrpEf7gmF1ZXAW-Oc0w-58-r2Uu8fFu8zqbL2HABbbxmlnLkYLAwWc4lT4SUFnSxlowZQK1TmwJKq7OCoZCJAZsmwA2neV5onozJ45C78833HkOrti6Y7hZdY7MPSkoQWcKo6Mj7f-Sm2fu6O05JkXbRFLIOggEyvgnBo1U7333kD4qC6mtVfa2qr1UNtXaWh2OuDkZX1uvauHDyZbnMU9Hvvxs4h4gnWQgqKSR_PpiAFQ</recordid><startdate>20060801</startdate><enddate>20060801</enddate><creator>Feng Deng</creator><creator>Chen, J.M.</creator><creator>Plummer, S.</creator><creator>Mingzhen Chen</creator><creator>Pisek, J.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>7SP</scope><scope>F28</scope></search><sort><creationdate>20060801</creationdate><title>Algorithm for global leaf area index retrieval using satellite imagery</title><author>Feng Deng ; Chen, J.M. ; Plummer, S. ; Mingzhen Chen ; Pisek, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c460t-b2f14e40cedc794843688f0adb822c0eaa5f50e8fa7d2e683c0f5304c4199da43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Algorithms</topic><topic>Applied geophysics</topic><topic>Bidirectional reflectance distribution function (BRDF)</topic><topic>Chebyshev polynomials</topic><topic>Computer simulation</topic><topic>Earth</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Ecosystems</topic><topic>Exact sciences and technology</topic><topic>geometrical optical (GO) model</topic><topic>Geometrical optics</topic><topic>Image retrieval</topic><topic>Infrared spectra</topic><topic>Internal geophysics</topic><topic>Kernel</topic><topic>Leaf area index</topic><topic>leaf area index (LAI)</topic><topic>lookup table (LUT)</topic><topic>Mathematical models</topic><topic>Nonlinear optics</topic><topic>Optical scattering</topic><topic>Remote sensing</topic><topic>Retrieval</topic><topic>Satellites</topic><topic>Solid modeling</topic><topic>Spectra</topic><topic>Spectral bands</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Feng Deng</creatorcontrib><creatorcontrib>Chen, J.M.</creatorcontrib><creatorcontrib>Plummer, S.</creatorcontrib><creatorcontrib>Mingzhen Chen</creatorcontrib><creatorcontrib>Pisek, J.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Feng Deng</au><au>Chen, J.M.</au><au>Plummer, S.</au><au>Mingzhen Chen</au><au>Pisek, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Algorithm for global leaf area index retrieval using satellite imagery</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2006-08-01</date><risdate>2006</risdate><volume>44</volume><issue>8</issue><spage>2219</spage><epage>2229</epage><pages>2219-2229</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>Leaf area index (LAI) is one of the most important Earth surface parameters in modeling ecosystems and their interaction with climate. Based on a geometrical optical model (Four-Scale) and LAI algorithms previously derived for Canada-wide applications, this paper presents a new algorithm for the global retrieval of LAI where the bidirectional reflectance distribution function (BRDF) is considered explicitly in the algorithm and hence removing the need of doing BRDF corrections and normalizations to the input images. The core problem of integrating BRDF into the LAI algorithm is that nonlinear BRDF kernels that are used to relate spectral reflectances to LAI are also LAI dependent, and no analytical solution is found to derive directly LAI from reflectance data. This problem is solved through developing a simple iteration procedure. The relationships between LAI and reflectances of various spectral bands (red, near infrared, and shortwave infrared) are simulated with Four-Scale with a multiple scattering scheme. Based on the model simulations, the key coefficients in the BRDF kernels are fitted with Chebyshev polynomials of the second kind. Spectral indices - the simple ratio and the reduced simple ratio - are used to effectively combine the spectral bands for LAI retrieval. Example regional and global LAI maps are produced. Accuracy assessment on a Canada-wide LAI map is made in comparison with a previously validated 1998 LAI map and ground measurements made in seven Landsat scenes</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TGRS.2006.872100</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0196-2892
ispartof IEEE transactions on geoscience and remote sensing, 2006-08, Vol.44 (8), p.2219-2229
issn 0196-2892
1558-0644
language eng
recordid cdi_proquest_journals_865683107
source IEEE Electronic Library (IEL)
subjects Algorithms
Applied geophysics
Bidirectional reflectance distribution function (BRDF)
Chebyshev polynomials
Computer simulation
Earth
Earth sciences
Earth, ocean, space
Ecosystems
Exact sciences and technology
geometrical optical (GO) model
Geometrical optics
Image retrieval
Infrared spectra
Internal geophysics
Kernel
Leaf area index
leaf area index (LAI)
lookup table (LUT)
Mathematical models
Nonlinear optics
Optical scattering
Remote sensing
Retrieval
Satellites
Solid modeling
Spectra
Spectral bands
Studies
title Algorithm for global leaf area index retrieval using satellite imagery
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T13%3A46%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Algorithm%20for%20global%20leaf%20area%20index%20retrieval%20using%20satellite%20imagery&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Feng%20Deng&rft.date=2006-08-01&rft.volume=44&rft.issue=8&rft.spage=2219&rft.epage=2229&rft.pages=2219-2229&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2006.872100&rft_dat=%3Cproquest_RIE%3E880673216%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=865683107&rft_id=info:pmid/&rft_ieee_id=1661810&rfr_iscdi=true