Mean square error approximation for wavelet-based semiregular mesh compression

The objective of this paper is to propose an efficient model-based bit allocation process optimizing the performances of a wavelet coder for semiregular meshes. More precisely, this process should compute the best quantizers for the wavelet coefficient subbands that minimize the reconstructed mean s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics 2006-07, Vol.12 (4), p.649-657
Hauptverfasser: Payan, F., Antonini, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 657
container_issue 4
container_start_page 649
container_title IEEE transactions on visualization and computer graphics
container_volume 12
creator Payan, F.
Antonini, M.
description The objective of this paper is to propose an efficient model-based bit allocation process optimizing the performances of a wavelet coder for semiregular meshes. More precisely, this process should compute the best quantizers for the wavelet coefficient subbands that minimize the reconstructed mean square error for one specific target bitrate. In order to design a fast and low complex allocation process, we propose an approximation of the reconstructed mean square error relative to the coding of semiregular mesh geometry. This error is expressed directly from the quantization errors of each coefficient subband. For that purpose, we have to take into account the influence of the wavelet filters on the quantized coefficients. Furthermore, we propose a specific approximation for wavelet transforms based on lifting schemes. Experimentally, we show that, in comparison with a "naive" approximation (depending on the subband levels), using the proposed approximation as distortion criterion during the model-based allocation process improves the performances of a wavelet-based coder for any model, any bitrate, and any lifting scheme.
doi_str_mv 10.1109/TVCG.2006.73
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_865235334</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1634328</ieee_id><sourcerecordid>68575347</sourcerecordid><originalsourceid>FETCH-LOGICAL-c471t-b1992d7b36f8365b94c1569638ff4d69977df60c487e478cf1a155fcf75ed7583</originalsourceid><addsrcrecordid>eNqF0UtLxDAQAOAgiu-bN0GKB0Wwa96Poyy-YNWLeg3ZdqKVdrsmWx__3pRdVDzoKWHmY5KZQWiH4AEh2JzcPQwvBhRjOVBsCa0Tw0mOBZbL6Y6Vyqmkcg1txPiMMeFcm1W0RqTGgiqyjm6uwU2y-NK5ABmE0IbMTaehfa8aN6vaSeZT5M29Qg2zfOwilFmEpgrw2NUuZA3Ep6xom2mAGBPfQive1RG2F-cmuj8_uxte5qPbi6vh6SgvuCKpEDGGlmrMpNdMirHhBRHSSKa956U0RqnSS1xwrYArXXjiiBC-8EpAqYRmm-hoXvfJ1XYa0mfDh21dZS9PR7aPYUwlF1i_kmQP5za19dJBnNmmigXUtZtA20WrjSSKCt7Lgz-l1EIJxtW_kKbxCi1ogvu_4HPbhUkajdUy5QVjPKHjOSpCG2MA_9URwbbfse13bPsdW8US31vU7MYNlN94sdQEduegAoAf6fQU1ewTg66oeQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>865235334</pqid></control><display><type>article</type><title>Mean square error approximation for wavelet-based semiregular mesh compression</title><source>IEEE Electronic Library (IEL)</source><creator>Payan, F. ; Antonini, M.</creator><creatorcontrib>Payan, F. ; Antonini, M.</creatorcontrib><description>The objective of this paper is to propose an efficient model-based bit allocation process optimizing the performances of a wavelet coder for semiregular meshes. More precisely, this process should compute the best quantizers for the wavelet coefficient subbands that minimize the reconstructed mean square error for one specific target bitrate. In order to design a fast and low complex allocation process, we propose an approximation of the reconstructed mean square error relative to the coding of semiregular mesh geometry. This error is expressed directly from the quantization errors of each coefficient subband. For that purpose, we have to take into account the influence of the wavelet filters on the quantized coefficients. Furthermore, we propose a specific approximation for wavelet transforms based on lifting schemes. Experimentally, we show that, in comparison with a "naive" approximation (depending on the subband levels), using the proposed approximation as distortion criterion during the model-based allocation process improves the performances of a wavelet-based coder for any model, any bitrate, and any lifting scheme.</description><identifier>ISSN: 1077-2626</identifier><identifier>EISSN: 1941-0506</identifier><identifier>DOI: 10.1109/TVCG.2006.73</identifier><identifier>PMID: 16805271</identifier><identifier>CODEN: ITVGEA</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; Allocations ; Approximation ; biorthogonal wavelet ; bit allocation ; Bit rate ; butterfly scheme ; Coefficients ; Compression algorithms ; Computer Graphics ; Computer Science ; Computer Simulation ; Data Compression - methods ; Engineering Sciences ; Errors ; Filters ; Finite element method ; Geometry ; geometry coding ; Image Enhancement - methods ; Image Interpretation, Computer-Assisted - methods ; Image reconstruction ; Imaging, Three-Dimensional - methods ; Lattices ; Least-Squares Analysis ; lifting scheme ; Mathematical analysis ; Mean square error methods ; Mean square errors ; Mean square values ; Models, Statistical ; Numerical Analysis, Computer-Assisted ; Quantization ; semiregular meshes ; Signal and Image Processing ; Signal Processing, Computer-Assisted ; User-Computer Interface ; Wavelet ; Wavelet coefficients ; Wavelet transforms ; Weighted mean square error (MSE)</subject><ispartof>IEEE transactions on visualization and computer graphics, 2006-07, Vol.12 (4), p.649-657</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2006</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c471t-b1992d7b36f8365b94c1569638ff4d69977df60c487e478cf1a155fcf75ed7583</citedby><cites>FETCH-LOGICAL-c471t-b1992d7b36f8365b94c1569638ff4d69977df60c487e478cf1a155fcf75ed7583</cites><orcidid>0000-0002-7012-1735 ; 0000-0001-9885-6445</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1634328$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,796,885,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1634328$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16805271$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00264508$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Payan, F.</creatorcontrib><creatorcontrib>Antonini, M.</creatorcontrib><title>Mean square error approximation for wavelet-based semiregular mesh compression</title><title>IEEE transactions on visualization and computer graphics</title><addtitle>TVCG</addtitle><addtitle>IEEE Trans Vis Comput Graph</addtitle><description>The objective of this paper is to propose an efficient model-based bit allocation process optimizing the performances of a wavelet coder for semiregular meshes. More precisely, this process should compute the best quantizers for the wavelet coefficient subbands that minimize the reconstructed mean square error for one specific target bitrate. In order to design a fast and low complex allocation process, we propose an approximation of the reconstructed mean square error relative to the coding of semiregular mesh geometry. This error is expressed directly from the quantization errors of each coefficient subband. For that purpose, we have to take into account the influence of the wavelet filters on the quantized coefficients. Furthermore, we propose a specific approximation for wavelet transforms based on lifting schemes. Experimentally, we show that, in comparison with a "naive" approximation (depending on the subband levels), using the proposed approximation as distortion criterion during the model-based allocation process improves the performances of a wavelet-based coder for any model, any bitrate, and any lifting scheme.</description><subject>Algorithms</subject><subject>Allocations</subject><subject>Approximation</subject><subject>biorthogonal wavelet</subject><subject>bit allocation</subject><subject>Bit rate</subject><subject>butterfly scheme</subject><subject>Coefficients</subject><subject>Compression algorithms</subject><subject>Computer Graphics</subject><subject>Computer Science</subject><subject>Computer Simulation</subject><subject>Data Compression - methods</subject><subject>Engineering Sciences</subject><subject>Errors</subject><subject>Filters</subject><subject>Finite element method</subject><subject>Geometry</subject><subject>geometry coding</subject><subject>Image Enhancement - methods</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>Image reconstruction</subject><subject>Imaging, Three-Dimensional - methods</subject><subject>Lattices</subject><subject>Least-Squares Analysis</subject><subject>lifting scheme</subject><subject>Mathematical analysis</subject><subject>Mean square error methods</subject><subject>Mean square errors</subject><subject>Mean square values</subject><subject>Models, Statistical</subject><subject>Numerical Analysis, Computer-Assisted</subject><subject>Quantization</subject><subject>semiregular meshes</subject><subject>Signal and Image Processing</subject><subject>Signal Processing, Computer-Assisted</subject><subject>User-Computer Interface</subject><subject>Wavelet</subject><subject>Wavelet coefficients</subject><subject>Wavelet transforms</subject><subject>Weighted mean square error (MSE)</subject><issn>1077-2626</issn><issn>1941-0506</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNqF0UtLxDAQAOAgiu-bN0GKB0Wwa96Poyy-YNWLeg3ZdqKVdrsmWx__3pRdVDzoKWHmY5KZQWiH4AEh2JzcPQwvBhRjOVBsCa0Tw0mOBZbL6Y6Vyqmkcg1txPiMMeFcm1W0RqTGgiqyjm6uwU2y-NK5ABmE0IbMTaehfa8aN6vaSeZT5M29Qg2zfOwilFmEpgrw2NUuZA3Ep6xom2mAGBPfQive1RG2F-cmuj8_uxte5qPbi6vh6SgvuCKpEDGGlmrMpNdMirHhBRHSSKa956U0RqnSS1xwrYArXXjiiBC-8EpAqYRmm-hoXvfJ1XYa0mfDh21dZS9PR7aPYUwlF1i_kmQP5za19dJBnNmmigXUtZtA20WrjSSKCt7Lgz-l1EIJxtW_kKbxCi1ogvu_4HPbhUkajdUy5QVjPKHjOSpCG2MA_9URwbbfse13bPsdW8US31vU7MYNlN94sdQEduegAoAf6fQU1ewTg66oeQ</recordid><startdate>20060701</startdate><enddate>20060701</enddate><creator>Payan, F.</creator><creator>Antonini, M.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>F28</scope><scope>FR3</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-7012-1735</orcidid><orcidid>https://orcid.org/0000-0001-9885-6445</orcidid></search><sort><creationdate>20060701</creationdate><title>Mean square error approximation for wavelet-based semiregular mesh compression</title><author>Payan, F. ; Antonini, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c471t-b1992d7b36f8365b94c1569638ff4d69977df60c487e478cf1a155fcf75ed7583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Algorithms</topic><topic>Allocations</topic><topic>Approximation</topic><topic>biorthogonal wavelet</topic><topic>bit allocation</topic><topic>Bit rate</topic><topic>butterfly scheme</topic><topic>Coefficients</topic><topic>Compression algorithms</topic><topic>Computer Graphics</topic><topic>Computer Science</topic><topic>Computer Simulation</topic><topic>Data Compression - methods</topic><topic>Engineering Sciences</topic><topic>Errors</topic><topic>Filters</topic><topic>Finite element method</topic><topic>Geometry</topic><topic>geometry coding</topic><topic>Image Enhancement - methods</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>Image reconstruction</topic><topic>Imaging, Three-Dimensional - methods</topic><topic>Lattices</topic><topic>Least-Squares Analysis</topic><topic>lifting scheme</topic><topic>Mathematical analysis</topic><topic>Mean square error methods</topic><topic>Mean square errors</topic><topic>Mean square values</topic><topic>Models, Statistical</topic><topic>Numerical Analysis, Computer-Assisted</topic><topic>Quantization</topic><topic>semiregular meshes</topic><topic>Signal and Image Processing</topic><topic>Signal Processing, Computer-Assisted</topic><topic>User-Computer Interface</topic><topic>Wavelet</topic><topic>Wavelet coefficients</topic><topic>Wavelet transforms</topic><topic>Weighted mean square error (MSE)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Payan, F.</creatorcontrib><creatorcontrib>Antonini, M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>IEEE transactions on visualization and computer graphics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Payan, F.</au><au>Antonini, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mean square error approximation for wavelet-based semiregular mesh compression</atitle><jtitle>IEEE transactions on visualization and computer graphics</jtitle><stitle>TVCG</stitle><addtitle>IEEE Trans Vis Comput Graph</addtitle><date>2006-07-01</date><risdate>2006</risdate><volume>12</volume><issue>4</issue><spage>649</spage><epage>657</epage><pages>649-657</pages><issn>1077-2626</issn><eissn>1941-0506</eissn><coden>ITVGEA</coden><abstract>The objective of this paper is to propose an efficient model-based bit allocation process optimizing the performances of a wavelet coder for semiregular meshes. More precisely, this process should compute the best quantizers for the wavelet coefficient subbands that minimize the reconstructed mean square error for one specific target bitrate. In order to design a fast and low complex allocation process, we propose an approximation of the reconstructed mean square error relative to the coding of semiregular mesh geometry. This error is expressed directly from the quantization errors of each coefficient subband. For that purpose, we have to take into account the influence of the wavelet filters on the quantized coefficients. Furthermore, we propose a specific approximation for wavelet transforms based on lifting schemes. Experimentally, we show that, in comparison with a "naive" approximation (depending on the subband levels), using the proposed approximation as distortion criterion during the model-based allocation process improves the performances of a wavelet-based coder for any model, any bitrate, and any lifting scheme.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>16805271</pmid><doi>10.1109/TVCG.2006.73</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-7012-1735</orcidid><orcidid>https://orcid.org/0000-0001-9885-6445</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1077-2626
ispartof IEEE transactions on visualization and computer graphics, 2006-07, Vol.12 (4), p.649-657
issn 1077-2626
1941-0506
language eng
recordid cdi_proquest_journals_865235334
source IEEE Electronic Library (IEL)
subjects Algorithms
Allocations
Approximation
biorthogonal wavelet
bit allocation
Bit rate
butterfly scheme
Coefficients
Compression algorithms
Computer Graphics
Computer Science
Computer Simulation
Data Compression - methods
Engineering Sciences
Errors
Filters
Finite element method
Geometry
geometry coding
Image Enhancement - methods
Image Interpretation, Computer-Assisted - methods
Image reconstruction
Imaging, Three-Dimensional - methods
Lattices
Least-Squares Analysis
lifting scheme
Mathematical analysis
Mean square error methods
Mean square errors
Mean square values
Models, Statistical
Numerical Analysis, Computer-Assisted
Quantization
semiregular meshes
Signal and Image Processing
Signal Processing, Computer-Assisted
User-Computer Interface
Wavelet
Wavelet coefficients
Wavelet transforms
Weighted mean square error (MSE)
title Mean square error approximation for wavelet-based semiregular mesh compression
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T09%3A20%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mean%20square%20error%20approximation%20for%20wavelet-based%20semiregular%20mesh%20compression&rft.jtitle=IEEE%20transactions%20on%20visualization%20and%20computer%20graphics&rft.au=Payan,%20F.&rft.date=2006-07-01&rft.volume=12&rft.issue=4&rft.spage=649&rft.epage=657&rft.pages=649-657&rft.issn=1077-2626&rft.eissn=1941-0506&rft.coden=ITVGEA&rft_id=info:doi/10.1109/TVCG.2006.73&rft_dat=%3Cproquest_RIE%3E68575347%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=865235334&rft_id=info:pmid/16805271&rft_ieee_id=1634328&rfr_iscdi=true