Controlling protein translocation through nanopores with bio-inspired fluid walls
Synthetic nanopores have been used to study individual biomolecules in high throughput, but their performance as sensors does not match that of biological ion channels. Challenges include control of nanopore diameters and surface chemistry, modification of the translocation times of single-molecule...
Gespeichert in:
Veröffentlicht in: | Nature nanotechnology 2011-04, Vol.6 (4), p.253-260 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 260 |
---|---|
container_issue | 4 |
container_start_page | 253 |
container_title | Nature nanotechnology |
container_volume | 6 |
creator | Yusko, Erik C. Johnson, Jay M. Majd, Sheereen Prangkio, Panchika Rollings, Ryan C. Li, Jiali Yang, Jerry Mayer, Michael |
description | Synthetic nanopores have been used to study individual biomolecules in high throughput, but their performance as sensors does not match that of biological ion channels. Challenges include control of nanopore diameters and surface chemistry, modification of the translocation times of single-molecule analytes through nanopores, and prevention of non-specific interactions with pore walls. Here, inspired by the olfactory sensilla of insect antennae, we show that coating nanopores with a fluid lipid bilayer tailors their surface chemistry and allows fine-tuning and dynamic variation of pore diameters in subnanometre increments. Incorporation of mobile ligands in the lipid bilayer conferred specificity and slowed the translocation of targeted proteins sufficiently to time-resolve translocation events of individual proteins. Lipid coatings also prevented pores from clogging, eliminated non-specific binding and enabled the translocation of amyloid-beta (Aβ) oligomers and fibrils. Through combined analysis of their translocation time, volume, charge, shape and ligand affinity, different proteins were identified.
Coating the walls of synthetic nanopores with fluid lipids slows down the translocation of proteins, eliminates non-specific binding and prevents clogging, thus offering a way to improve the performance of nanopore-based sensors. |
doi_str_mv | 10.1038/nnano.2011.12 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_865215546</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2340733391</sourcerecordid><originalsourceid>FETCH-LOGICAL-c397t-dbeb070dab9c75803aa079e9052c9b0bc2f4b249fbed439545ad26b0aa793ae53</originalsourceid><addsrcrecordid>eNptkM1LAzEQxYMotlaPXmXxvms-NruboxS_oCCCnkOym21T0mRNshT_e1Nb68XTzDA_3pt5AFwjWCBImjtrhXUFhggVCJ-AKarLJieE0dNj39QTcBHCGkKKGS7PwQQjQipcVVPwNnc2emeMtsts8C4qbbPohQ3GtSJql6aVd-Nyle2MBudVyLY6rjKpXa5tGLRXXdabUXfZVhgTLsFZL0xQV4c6Ax-PD-_z53zx-vQyv1_kLWF1zDupJKxhJyRra9pAIgSsmWLpxpZJKFvclxKXrJeqK9M7JRUdriQUomZEKEpm4Havm67-HFWIfO1Gb5MlbyqKEaVllaB8D7XeheBVzwevN8J_cQT5Lj_-kx_f5ccRTvzNQXSUG9Ud6d_AElDsgZBWdqn8n-v_it_sm321</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>865215546</pqid></control><display><type>article</type><title>Controlling protein translocation through nanopores with bio-inspired fluid walls</title><source>MEDLINE</source><source>SpringerLink Journals</source><source>Nature Journals Online</source><creator>Yusko, Erik C. ; Johnson, Jay M. ; Majd, Sheereen ; Prangkio, Panchika ; Rollings, Ryan C. ; Li, Jiali ; Yang, Jerry ; Mayer, Michael</creator><creatorcontrib>Yusko, Erik C. ; Johnson, Jay M. ; Majd, Sheereen ; Prangkio, Panchika ; Rollings, Ryan C. ; Li, Jiali ; Yang, Jerry ; Mayer, Michael</creatorcontrib><description>Synthetic nanopores have been used to study individual biomolecules in high throughput, but their performance as sensors does not match that of biological ion channels. Challenges include control of nanopore diameters and surface chemistry, modification of the translocation times of single-molecule analytes through nanopores, and prevention of non-specific interactions with pore walls. Here, inspired by the olfactory sensilla of insect antennae, we show that coating nanopores with a fluid lipid bilayer tailors their surface chemistry and allows fine-tuning and dynamic variation of pore diameters in subnanometre increments. Incorporation of mobile ligands in the lipid bilayer conferred specificity and slowed the translocation of targeted proteins sufficiently to time-resolve translocation events of individual proteins. Lipid coatings also prevented pores from clogging, eliminated non-specific binding and enabled the translocation of amyloid-beta (Aβ) oligomers and fibrils. Through combined analysis of their translocation time, volume, charge, shape and ligand affinity, different proteins were identified.
Coating the walls of synthetic nanopores with fluid lipids slows down the translocation of proteins, eliminates non-specific binding and prevents clogging, thus offering a way to improve the performance of nanopore-based sensors.</description><identifier>ISSN: 1748-3387</identifier><identifier>EISSN: 1748-3395</identifier><identifier>DOI: 10.1038/nnano.2011.12</identifier><identifier>PMID: 21336266</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/54/989 ; 639/925/350/1058 ; 639/925/350/59 ; Amyloid beta-Peptides - chemistry ; Amyloid beta-Peptides - metabolism ; Animals ; Arthropod Antennae ; Biomimetic Materials - chemistry ; Bombyx ; Chemistry and Materials Science ; Diffusion ; Glycerophosphates - chemistry ; Glycerophosphates - metabolism ; Insects ; Ligands ; Lipid Bilayers - chemistry ; Lipid Bilayers - metabolism ; Lipids ; Materials Science ; Nanopores ; Nanotechnology ; Nanotechnology and Microengineering ; Pheromones ; Pores ; Porosity ; Prevention ; Protein Transport ; Proteins ; Sensors ; Silicon nitride ; Streptavidin - chemistry ; Streptavidin - metabolism ; Surface chemistry ; Translocation</subject><ispartof>Nature nanotechnology, 2011-04, Vol.6 (4), p.253-260</ispartof><rights>Springer Nature Limited 2011</rights><rights>Copyright Nature Publishing Group Apr 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c397t-dbeb070dab9c75803aa079e9052c9b0bc2f4b249fbed439545ad26b0aa793ae53</citedby><cites>FETCH-LOGICAL-c397t-dbeb070dab9c75803aa079e9052c9b0bc2f4b249fbed439545ad26b0aa793ae53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nnano.2011.12$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nnano.2011.12$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21336266$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yusko, Erik C.</creatorcontrib><creatorcontrib>Johnson, Jay M.</creatorcontrib><creatorcontrib>Majd, Sheereen</creatorcontrib><creatorcontrib>Prangkio, Panchika</creatorcontrib><creatorcontrib>Rollings, Ryan C.</creatorcontrib><creatorcontrib>Li, Jiali</creatorcontrib><creatorcontrib>Yang, Jerry</creatorcontrib><creatorcontrib>Mayer, Michael</creatorcontrib><title>Controlling protein translocation through nanopores with bio-inspired fluid walls</title><title>Nature nanotechnology</title><addtitle>Nature Nanotech</addtitle><addtitle>Nat Nanotechnol</addtitle><description>Synthetic nanopores have been used to study individual biomolecules in high throughput, but their performance as sensors does not match that of biological ion channels. Challenges include control of nanopore diameters and surface chemistry, modification of the translocation times of single-molecule analytes through nanopores, and prevention of non-specific interactions with pore walls. Here, inspired by the olfactory sensilla of insect antennae, we show that coating nanopores with a fluid lipid bilayer tailors their surface chemistry and allows fine-tuning and dynamic variation of pore diameters in subnanometre increments. Incorporation of mobile ligands in the lipid bilayer conferred specificity and slowed the translocation of targeted proteins sufficiently to time-resolve translocation events of individual proteins. Lipid coatings also prevented pores from clogging, eliminated non-specific binding and enabled the translocation of amyloid-beta (Aβ) oligomers and fibrils. Through combined analysis of their translocation time, volume, charge, shape and ligand affinity, different proteins were identified.
Coating the walls of synthetic nanopores with fluid lipids slows down the translocation of proteins, eliminates non-specific binding and prevents clogging, thus offering a way to improve the performance of nanopore-based sensors.</description><subject>639/301/54/989</subject><subject>639/925/350/1058</subject><subject>639/925/350/59</subject><subject>Amyloid beta-Peptides - chemistry</subject><subject>Amyloid beta-Peptides - metabolism</subject><subject>Animals</subject><subject>Arthropod Antennae</subject><subject>Biomimetic Materials - chemistry</subject><subject>Bombyx</subject><subject>Chemistry and Materials Science</subject><subject>Diffusion</subject><subject>Glycerophosphates - chemistry</subject><subject>Glycerophosphates - metabolism</subject><subject>Insects</subject><subject>Ligands</subject><subject>Lipid Bilayers - chemistry</subject><subject>Lipid Bilayers - metabolism</subject><subject>Lipids</subject><subject>Materials Science</subject><subject>Nanopores</subject><subject>Nanotechnology</subject><subject>Nanotechnology and Microengineering</subject><subject>Pheromones</subject><subject>Pores</subject><subject>Porosity</subject><subject>Prevention</subject><subject>Protein Transport</subject><subject>Proteins</subject><subject>Sensors</subject><subject>Silicon nitride</subject><subject>Streptavidin - chemistry</subject><subject>Streptavidin - metabolism</subject><subject>Surface chemistry</subject><subject>Translocation</subject><issn>1748-3387</issn><issn>1748-3395</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNptkM1LAzEQxYMotlaPXmXxvms-NruboxS_oCCCnkOym21T0mRNshT_e1Nb68XTzDA_3pt5AFwjWCBImjtrhXUFhggVCJ-AKarLJieE0dNj39QTcBHCGkKKGS7PwQQjQipcVVPwNnc2emeMtsts8C4qbbPohQ3GtSJql6aVd-Nyle2MBudVyLY6rjKpXa5tGLRXXdabUXfZVhgTLsFZL0xQV4c6Ax-PD-_z53zx-vQyv1_kLWF1zDupJKxhJyRra9pAIgSsmWLpxpZJKFvclxKXrJeqK9M7JRUdriQUomZEKEpm4Havm67-HFWIfO1Gb5MlbyqKEaVllaB8D7XeheBVzwevN8J_cQT5Lj_-kx_f5ccRTvzNQXSUG9Ud6d_AElDsgZBWdqn8n-v_it_sm321</recordid><startdate>20110401</startdate><enddate>20110401</enddate><creator>Yusko, Erik C.</creator><creator>Johnson, Jay M.</creator><creator>Majd, Sheereen</creator><creator>Prangkio, Panchika</creator><creator>Rollings, Ryan C.</creator><creator>Li, Jiali</creator><creator>Yang, Jerry</creator><creator>Mayer, Michael</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20110401</creationdate><title>Controlling protein translocation through nanopores with bio-inspired fluid walls</title><author>Yusko, Erik C. ; Johnson, Jay M. ; Majd, Sheereen ; Prangkio, Panchika ; Rollings, Ryan C. ; Li, Jiali ; Yang, Jerry ; Mayer, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c397t-dbeb070dab9c75803aa079e9052c9b0bc2f4b249fbed439545ad26b0aa793ae53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>639/301/54/989</topic><topic>639/925/350/1058</topic><topic>639/925/350/59</topic><topic>Amyloid beta-Peptides - chemistry</topic><topic>Amyloid beta-Peptides - metabolism</topic><topic>Animals</topic><topic>Arthropod Antennae</topic><topic>Biomimetic Materials - chemistry</topic><topic>Bombyx</topic><topic>Chemistry and Materials Science</topic><topic>Diffusion</topic><topic>Glycerophosphates - chemistry</topic><topic>Glycerophosphates - metabolism</topic><topic>Insects</topic><topic>Ligands</topic><topic>Lipid Bilayers - chemistry</topic><topic>Lipid Bilayers - metabolism</topic><topic>Lipids</topic><topic>Materials Science</topic><topic>Nanopores</topic><topic>Nanotechnology</topic><topic>Nanotechnology and Microengineering</topic><topic>Pheromones</topic><topic>Pores</topic><topic>Porosity</topic><topic>Prevention</topic><topic>Protein Transport</topic><topic>Proteins</topic><topic>Sensors</topic><topic>Silicon nitride</topic><topic>Streptavidin - chemistry</topic><topic>Streptavidin - metabolism</topic><topic>Surface chemistry</topic><topic>Translocation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yusko, Erik C.</creatorcontrib><creatorcontrib>Johnson, Jay M.</creatorcontrib><creatorcontrib>Majd, Sheereen</creatorcontrib><creatorcontrib>Prangkio, Panchika</creatorcontrib><creatorcontrib>Rollings, Ryan C.</creatorcontrib><creatorcontrib>Li, Jiali</creatorcontrib><creatorcontrib>Yang, Jerry</creatorcontrib><creatorcontrib>Mayer, Michael</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>Nature nanotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yusko, Erik C.</au><au>Johnson, Jay M.</au><au>Majd, Sheereen</au><au>Prangkio, Panchika</au><au>Rollings, Ryan C.</au><au>Li, Jiali</au><au>Yang, Jerry</au><au>Mayer, Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Controlling protein translocation through nanopores with bio-inspired fluid walls</atitle><jtitle>Nature nanotechnology</jtitle><stitle>Nature Nanotech</stitle><addtitle>Nat Nanotechnol</addtitle><date>2011-04-01</date><risdate>2011</risdate><volume>6</volume><issue>4</issue><spage>253</spage><epage>260</epage><pages>253-260</pages><issn>1748-3387</issn><eissn>1748-3395</eissn><abstract>Synthetic nanopores have been used to study individual biomolecules in high throughput, but their performance as sensors does not match that of biological ion channels. Challenges include control of nanopore diameters and surface chemistry, modification of the translocation times of single-molecule analytes through nanopores, and prevention of non-specific interactions with pore walls. Here, inspired by the olfactory sensilla of insect antennae, we show that coating nanopores with a fluid lipid bilayer tailors their surface chemistry and allows fine-tuning and dynamic variation of pore diameters in subnanometre increments. Incorporation of mobile ligands in the lipid bilayer conferred specificity and slowed the translocation of targeted proteins sufficiently to time-resolve translocation events of individual proteins. Lipid coatings also prevented pores from clogging, eliminated non-specific binding and enabled the translocation of amyloid-beta (Aβ) oligomers and fibrils. Through combined analysis of their translocation time, volume, charge, shape and ligand affinity, different proteins were identified.
Coating the walls of synthetic nanopores with fluid lipids slows down the translocation of proteins, eliminates non-specific binding and prevents clogging, thus offering a way to improve the performance of nanopore-based sensors.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>21336266</pmid><doi>10.1038/nnano.2011.12</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1748-3387 |
ispartof | Nature nanotechnology, 2011-04, Vol.6 (4), p.253-260 |
issn | 1748-3387 1748-3395 |
language | eng |
recordid | cdi_proquest_journals_865215546 |
source | MEDLINE; SpringerLink Journals; Nature Journals Online |
subjects | 639/301/54/989 639/925/350/1058 639/925/350/59 Amyloid beta-Peptides - chemistry Amyloid beta-Peptides - metabolism Animals Arthropod Antennae Biomimetic Materials - chemistry Bombyx Chemistry and Materials Science Diffusion Glycerophosphates - chemistry Glycerophosphates - metabolism Insects Ligands Lipid Bilayers - chemistry Lipid Bilayers - metabolism Lipids Materials Science Nanopores Nanotechnology Nanotechnology and Microengineering Pheromones Pores Porosity Prevention Protein Transport Proteins Sensors Silicon nitride Streptavidin - chemistry Streptavidin - metabolism Surface chemistry Translocation |
title | Controlling protein translocation through nanopores with bio-inspired fluid walls |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T12%3A58%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Controlling%20protein%20translocation%20through%20nanopores%20with%20bio-inspired%20fluid%20walls&rft.jtitle=Nature%20nanotechnology&rft.au=Yusko,%20Erik%20C.&rft.date=2011-04-01&rft.volume=6&rft.issue=4&rft.spage=253&rft.epage=260&rft.pages=253-260&rft.issn=1748-3387&rft.eissn=1748-3395&rft_id=info:doi/10.1038/nnano.2011.12&rft_dat=%3Cproquest_cross%3E2340733391%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=865215546&rft_id=info:pmid/21336266&rfr_iscdi=true |