Kalman Filter-Based Integration of DGPS and Vehicle Sensors for Localization

We present a position estimation scheme for cars based on the integration of global positioning system (GPS) with vehicle sensors. The aim is to achieve enough accuracy to enable in vehicle cooperative collision warning, i.e., systems that provides warnings to drivers based on information about the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on control systems technology 2007-11, Vol.15 (6), p.1080-1088
Hauptverfasser: Rezaei, S., Sengupta, R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1088
container_issue 6
container_start_page 1080
container_title IEEE transactions on control systems technology
container_volume 15
creator Rezaei, S.
Sengupta, R.
description We present a position estimation scheme for cars based on the integration of global positioning system (GPS) with vehicle sensors. The aim is to achieve enough accuracy to enable in vehicle cooperative collision warning, i.e., systems that provides warnings to drivers based on information about the motions of neighboring vehicles obtained by wireless communications from those vehicles, without use of ranging sensors. The vehicle sensors consist of wheel speed sensors, steering angle encoder, and a fiber optic gyro. We fuse these in an extended Kalman filter. The process model is a dynamic bicycle model. We present data from about 60 km of driving in urban environments including stops, intersection turns, U-turns, and lane changes, at both low and high speeds. The data show the filter estimates position, speed, and heading with the accuracies required by cooperative collision warning in all except two kinds of settings. The data also shows GPS and vehicle sensor integration through a bicycle model compares favorably with position estimation by fusing GPS and inertial navigation system (INS) through a kinematic model.
doi_str_mv 10.1109/TCST.2006.886439
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_864992295</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4343975</ieee_id><sourcerecordid>896196620</sourcerecordid><originalsourceid>FETCH-LOGICAL-c491t-64e6c338ac3ba53d8089068183803d44a7805e194df356355d7b88df7af3fb033</originalsourceid><addsrcrecordid>eNp90c9LwzAUB_AiCv68C16CoJ46X_qSNDnqdCoOFDa9hqxNtNI1mnQH_evNnCh48JRAPu8Led8s26cwoBTU6XQ4mQ4KADGQUjBUa9kW5VzmIAVfT3cQmAuOYjPbjvEFgDJelFvZ-Na0c9ORUdP2NuTnJtqa3HS9fQqmb3xHvCMXV_cTYrqaPNrnpmotmdgu-hCJ84GMfWXa5uML72YbzrTR7n2fO9nD6HI6vM7Hd1c3w7NxXjFF-1wwKypEaSqcGY61BKlASCpRAtaMmVICt1Sx2iEXyHldzqSsXWkcuhkg7mQnq9zX4N8WNvZ63sTKtq3prF9ELZWgSogCkjz-VyITQKEoEzz8A1_8InTpFzqtU6miUDwhWKEq-BiDdfo1NHMT3jUFvWxBL1vQyxb0qoU0cvSda2JalAumq5r4O6cKKFRJkztYucZa-_PMMGWUHD8Bha6NkQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>864992295</pqid></control><display><type>article</type><title>Kalman Filter-Based Integration of DGPS and Vehicle Sensors for Localization</title><source>IEEE Electronic Library (IEL)</source><creator>Rezaei, S. ; Sengupta, R.</creator><creatorcontrib>Rezaei, S. ; Sengupta, R.</creatorcontrib><description>We present a position estimation scheme for cars based on the integration of global positioning system (GPS) with vehicle sensors. The aim is to achieve enough accuracy to enable in vehicle cooperative collision warning, i.e., systems that provides warnings to drivers based on information about the motions of neighboring vehicles obtained by wireless communications from those vehicles, without use of ranging sensors. The vehicle sensors consist of wheel speed sensors, steering angle encoder, and a fiber optic gyro. We fuse these in an extended Kalman filter. The process model is a dynamic bicycle model. We present data from about 60 km of driving in urban environments including stops, intersection turns, U-turns, and lane changes, at both low and high speeds. The data show the filter estimates position, speed, and heading with the accuracies required by cooperative collision warning in all except two kinds of settings. The data also shows GPS and vehicle sensor integration through a bicycle model compares favorably with position estimation by fusing GPS and inertial navigation system (INS) through a kinematic model.</description><identifier>ISSN: 1063-6536</identifier><identifier>EISSN: 1558-0865</identifier><identifier>DOI: 10.1109/TCST.2006.886439</identifier><identifier>CODEN: IETTE2</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Accuracy ; Applied sciences ; Automobiles ; Automotive engineering ; Bicycles ; Computer science; control theory; systems ; Control theory. Systems ; Exact sciences and technology ; Geographic information systems ; Global Positioning System ; Global Positioning System (GPS) ; inertial navigation ; Kalman filtering ; Kalman filters ; localization ; navigation ; Optical fiber sensors ; Optical fibers ; Optical sensors ; safety ; Satellite navigation systems ; Sensor systems ; Sensors ; Vehicle driving ; vehicles ; Warning ; Wheels ; Wireless communication</subject><ispartof>IEEE transactions on control systems technology, 2007-11, Vol.15 (6), p.1080-1088</ispartof><rights>2008 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2007</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c491t-64e6c338ac3ba53d8089068183803d44a7805e194df356355d7b88df7af3fb033</citedby><cites>FETCH-LOGICAL-c491t-64e6c338ac3ba53d8089068183803d44a7805e194df356355d7b88df7af3fb033</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4343975$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4343975$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=19202971$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Rezaei, S.</creatorcontrib><creatorcontrib>Sengupta, R.</creatorcontrib><title>Kalman Filter-Based Integration of DGPS and Vehicle Sensors for Localization</title><title>IEEE transactions on control systems technology</title><addtitle>TCST</addtitle><description>We present a position estimation scheme for cars based on the integration of global positioning system (GPS) with vehicle sensors. The aim is to achieve enough accuracy to enable in vehicle cooperative collision warning, i.e., systems that provides warnings to drivers based on information about the motions of neighboring vehicles obtained by wireless communications from those vehicles, without use of ranging sensors. The vehicle sensors consist of wheel speed sensors, steering angle encoder, and a fiber optic gyro. We fuse these in an extended Kalman filter. The process model is a dynamic bicycle model. We present data from about 60 km of driving in urban environments including stops, intersection turns, U-turns, and lane changes, at both low and high speeds. The data show the filter estimates position, speed, and heading with the accuracies required by cooperative collision warning in all except two kinds of settings. The data also shows GPS and vehicle sensor integration through a bicycle model compares favorably with position estimation by fusing GPS and inertial navigation system (INS) through a kinematic model.</description><subject>Accuracy</subject><subject>Applied sciences</subject><subject>Automobiles</subject><subject>Automotive engineering</subject><subject>Bicycles</subject><subject>Computer science; control theory; systems</subject><subject>Control theory. Systems</subject><subject>Exact sciences and technology</subject><subject>Geographic information systems</subject><subject>Global Positioning System</subject><subject>Global Positioning System (GPS)</subject><subject>inertial navigation</subject><subject>Kalman filtering</subject><subject>Kalman filters</subject><subject>localization</subject><subject>navigation</subject><subject>Optical fiber sensors</subject><subject>Optical fibers</subject><subject>Optical sensors</subject><subject>safety</subject><subject>Satellite navigation systems</subject><subject>Sensor systems</subject><subject>Sensors</subject><subject>Vehicle driving</subject><subject>vehicles</subject><subject>Warning</subject><subject>Wheels</subject><subject>Wireless communication</subject><issn>1063-6536</issn><issn>1558-0865</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp90c9LwzAUB_AiCv68C16CoJ46X_qSNDnqdCoOFDa9hqxNtNI1mnQH_evNnCh48JRAPu8Led8s26cwoBTU6XQ4mQ4KADGQUjBUa9kW5VzmIAVfT3cQmAuOYjPbjvEFgDJelFvZ-Na0c9ORUdP2NuTnJtqa3HS9fQqmb3xHvCMXV_cTYrqaPNrnpmotmdgu-hCJ84GMfWXa5uML72YbzrTR7n2fO9nD6HI6vM7Hd1c3w7NxXjFF-1wwKypEaSqcGY61BKlASCpRAtaMmVICt1Sx2iEXyHldzqSsXWkcuhkg7mQnq9zX4N8WNvZ63sTKtq3prF9ELZWgSogCkjz-VyITQKEoEzz8A1_8InTpFzqtU6miUDwhWKEq-BiDdfo1NHMT3jUFvWxBL1vQyxb0qoU0cvSda2JalAumq5r4O6cKKFRJkztYucZa-_PMMGWUHD8Bha6NkQ</recordid><startdate>20071101</startdate><enddate>20071101</enddate><creator>Rezaei, S.</creator><creator>Sengupta, R.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope><scope>F28</scope></search><sort><creationdate>20071101</creationdate><title>Kalman Filter-Based Integration of DGPS and Vehicle Sensors for Localization</title><author>Rezaei, S. ; Sengupta, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c491t-64e6c338ac3ba53d8089068183803d44a7805e194df356355d7b88df7af3fb033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Accuracy</topic><topic>Applied sciences</topic><topic>Automobiles</topic><topic>Automotive engineering</topic><topic>Bicycles</topic><topic>Computer science; control theory; systems</topic><topic>Control theory. Systems</topic><topic>Exact sciences and technology</topic><topic>Geographic information systems</topic><topic>Global Positioning System</topic><topic>Global Positioning System (GPS)</topic><topic>inertial navigation</topic><topic>Kalman filtering</topic><topic>Kalman filters</topic><topic>localization</topic><topic>navigation</topic><topic>Optical fiber sensors</topic><topic>Optical fibers</topic><topic>Optical sensors</topic><topic>safety</topic><topic>Satellite navigation systems</topic><topic>Sensor systems</topic><topic>Sensors</topic><topic>Vehicle driving</topic><topic>vehicles</topic><topic>Warning</topic><topic>Wheels</topic><topic>Wireless communication</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rezaei, S.</creatorcontrib><creatorcontrib>Sengupta, R.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><jtitle>IEEE transactions on control systems technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Rezaei, S.</au><au>Sengupta, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Kalman Filter-Based Integration of DGPS and Vehicle Sensors for Localization</atitle><jtitle>IEEE transactions on control systems technology</jtitle><stitle>TCST</stitle><date>2007-11-01</date><risdate>2007</risdate><volume>15</volume><issue>6</issue><spage>1080</spage><epage>1088</epage><pages>1080-1088</pages><issn>1063-6536</issn><eissn>1558-0865</eissn><coden>IETTE2</coden><abstract>We present a position estimation scheme for cars based on the integration of global positioning system (GPS) with vehicle sensors. The aim is to achieve enough accuracy to enable in vehicle cooperative collision warning, i.e., systems that provides warnings to drivers based on information about the motions of neighboring vehicles obtained by wireless communications from those vehicles, without use of ranging sensors. The vehicle sensors consist of wheel speed sensors, steering angle encoder, and a fiber optic gyro. We fuse these in an extended Kalman filter. The process model is a dynamic bicycle model. We present data from about 60 km of driving in urban environments including stops, intersection turns, U-turns, and lane changes, at both low and high speeds. The data show the filter estimates position, speed, and heading with the accuracies required by cooperative collision warning in all except two kinds of settings. The data also shows GPS and vehicle sensor integration through a bicycle model compares favorably with position estimation by fusing GPS and inertial navigation system (INS) through a kinematic model.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TCST.2006.886439</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1063-6536
ispartof IEEE transactions on control systems technology, 2007-11, Vol.15 (6), p.1080-1088
issn 1063-6536
1558-0865
language eng
recordid cdi_proquest_journals_864992295
source IEEE Electronic Library (IEL)
subjects Accuracy
Applied sciences
Automobiles
Automotive engineering
Bicycles
Computer science
control theory
systems
Control theory. Systems
Exact sciences and technology
Geographic information systems
Global Positioning System
Global Positioning System (GPS)
inertial navigation
Kalman filtering
Kalman filters
localization
navigation
Optical fiber sensors
Optical fibers
Optical sensors
safety
Satellite navigation systems
Sensor systems
Sensors
Vehicle driving
vehicles
Warning
Wheels
Wireless communication
title Kalman Filter-Based Integration of DGPS and Vehicle Sensors for Localization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T18%3A13%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Kalman%20Filter-Based%20Integration%20of%20DGPS%20and%20Vehicle%20Sensors%20for%20Localization&rft.jtitle=IEEE%20transactions%20on%20control%20systems%20technology&rft.au=Rezaei,%20S.&rft.date=2007-11-01&rft.volume=15&rft.issue=6&rft.spage=1080&rft.epage=1088&rft.pages=1080-1088&rft.issn=1063-6536&rft.eissn=1558-0865&rft.coden=IETTE2&rft_id=info:doi/10.1109/TCST.2006.886439&rft_dat=%3Cproquest_RIE%3E896196620%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=864992295&rft_id=info:pmid/&rft_ieee_id=4343975&rfr_iscdi=true