Transactions Papers - Device Placement for Heterogeneous Wireless Sensor Networks: Minimum Cost with Lifetime Constraints
Device placement is a fundamental factor in determining the coverage, connectivity, cost and lifetime of a wireless sensor network (WSN). In this paper, we explore the problem of relay node placement in heterogeneous WSN. We formulate a generalized node placement optimization problem aimed at minimi...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on wireless communications 2007-07, Vol.6 (7), p.2444-2453 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2453 |
---|---|
container_issue | 7 |
container_start_page | 2444 |
container_title | IEEE transactions on wireless communications |
container_volume | 6 |
creator | Quanhong Wang Kenan Xu Takahara, G. Hassanein, H. |
description | Device placement is a fundamental factor in determining the coverage, connectivity, cost and lifetime of a wireless sensor network (WSN). In this paper, we explore the problem of relay node placement in heterogeneous WSN. We formulate a generalized node placement optimization problem aimed at minimizing the network cost with constraints on lifetime and connectivity. Depending on the constraints, two representative scenarios of this problem are described. We characterize the first problem, where relay nodes are not energy constrained, as a minimum set covering problem. We further consider a more challenging scenario, where all nodes are energy limited. As an optimal solution to this problem is difficult to obtain, a two-phase approach is proposed, in which locally optimal design decisions are taken. The placement of the first phase relay nodes (FPRN), which are directly connected to sensor nodes (SN), is modeled as a minimum set covering problem. To ensure the relaying of the traffic from the FPRN to the base station, three heuristic schemes are proposed to place the second phase relay nodes (SPRN). Furthermore, a lower bound on the minimum number of SPRN required for connectivity is provided. The efficiency of our proposals is investigated by numerical examples. |
doi_str_mv | 10.1109/TWC.2007.05357 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_864585211</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4274998</ieee_id><sourcerecordid>34462860</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2262-f3ae33cfb2fbf5ff82f0a6014adb770f571f08c266024b42549747f16cecacdc3</originalsourceid><addsrcrecordid>eNqFkT1vFDEQhleISIRAS0NjUZBqD3_bS4eOQJAuEIlDKS2fMwaHXfvw-Ijy79nLIQoKqGY088xIr56ue8bogjE6vFpfLRecUrOgSijzoDtmStmec2kf7nuhe8aNftQ9RryhlBmt1HF3t64-ow8tlYzk0m-hIunJW_iZApDL0QeYIDcSSyXn0KCWr5Ch7JBcpQojIJLPkHHefoR2W-p3fE0uUk7TbiLLgo3cpvaNrFKEliaYRxlb9Sk3fNIdRT8iPP1dT7ov787Wy_N-9en9h-WbVR8417yPwoMQIW543EQVo-WRek2Z9NcbY2hUhkVqA9eacrmRXMnBSBOZDhB8uA7ipDs9_N3W8mMH2NyUMMA4-vscbqBCSyEN_y9pLdXGaLsnX_6TFFJqbjWdwRd_gTdlV_Oc11ktlVWcsRlaHKBQC2KF6LY1Tb7eOUbdXq2b1bq9Wnevdj54fjhIAPAHltzIYbDiF98OoEs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>864585211</pqid></control><display><type>article</type><title>Transactions Papers - Device Placement for Heterogeneous Wireless Sensor Networks: Minimum Cost with Lifetime Constraints</title><source>IEEE Electronic Library Online</source><creator>Quanhong Wang ; Kenan Xu ; Takahara, G. ; Hassanein, H.</creator><creatorcontrib>Quanhong Wang ; Kenan Xu ; Takahara, G. ; Hassanein, H.</creatorcontrib><description>Device placement is a fundamental factor in determining the coverage, connectivity, cost and lifetime of a wireless sensor network (WSN). In this paper, we explore the problem of relay node placement in heterogeneous WSN. We formulate a generalized node placement optimization problem aimed at minimizing the network cost with constraints on lifetime and connectivity. Depending on the constraints, two representative scenarios of this problem are described. We characterize the first problem, where relay nodes are not energy constrained, as a minimum set covering problem. We further consider a more challenging scenario, where all nodes are energy limited. As an optimal solution to this problem is difficult to obtain, a two-phase approach is proposed, in which locally optimal design decisions are taken. The placement of the first phase relay nodes (FPRN), which are directly connected to sensor nodes (SN), is modeled as a minimum set covering problem. To ensure the relaying of the traffic from the FPRN to the base station, three heuristic schemes are proposed to place the second phase relay nodes (SPRN). Furthermore, a lower bound on the minimum number of SPRN required for connectivity is provided. The efficiency of our proposals is investigated by numerical examples.</description><identifier>ISSN: 1536-1276</identifier><identifier>EISSN: 1558-2248</identifier><identifier>DOI: 10.1109/TWC.2007.05357</identifier><identifier>CODEN: ITWCAX</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Base stations ; Computerized monitoring ; Constraint optimization ; Cost function ; Councils ; Devices ; Information technology ; Mathematical models ; Networks ; Optimization ; Placement ; Proposals ; Relay ; Relays ; Sensors ; Studies ; Traffic control ; Wireless communication ; Wireless sensor networks</subject><ispartof>IEEE transactions on wireless communications, 2007-07, Vol.6 (7), p.2444-2453</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2007</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2262-f3ae33cfb2fbf5ff82f0a6014adb770f571f08c266024b42549747f16cecacdc3</citedby><cites>FETCH-LOGICAL-c2262-f3ae33cfb2fbf5ff82f0a6014adb770f571f08c266024b42549747f16cecacdc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4274998$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4274998$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Quanhong Wang</creatorcontrib><creatorcontrib>Kenan Xu</creatorcontrib><creatorcontrib>Takahara, G.</creatorcontrib><creatorcontrib>Hassanein, H.</creatorcontrib><title>Transactions Papers - Device Placement for Heterogeneous Wireless Sensor Networks: Minimum Cost with Lifetime Constraints</title><title>IEEE transactions on wireless communications</title><addtitle>TWC</addtitle><description>Device placement is a fundamental factor in determining the coverage, connectivity, cost and lifetime of a wireless sensor network (WSN). In this paper, we explore the problem of relay node placement in heterogeneous WSN. We formulate a generalized node placement optimization problem aimed at minimizing the network cost with constraints on lifetime and connectivity. Depending on the constraints, two representative scenarios of this problem are described. We characterize the first problem, where relay nodes are not energy constrained, as a minimum set covering problem. We further consider a more challenging scenario, where all nodes are energy limited. As an optimal solution to this problem is difficult to obtain, a two-phase approach is proposed, in which locally optimal design decisions are taken. The placement of the first phase relay nodes (FPRN), which are directly connected to sensor nodes (SN), is modeled as a minimum set covering problem. To ensure the relaying of the traffic from the FPRN to the base station, three heuristic schemes are proposed to place the second phase relay nodes (SPRN). Furthermore, a lower bound on the minimum number of SPRN required for connectivity is provided. The efficiency of our proposals is investigated by numerical examples.</description><subject>Algorithms</subject><subject>Base stations</subject><subject>Computerized monitoring</subject><subject>Constraint optimization</subject><subject>Cost function</subject><subject>Councils</subject><subject>Devices</subject><subject>Information technology</subject><subject>Mathematical models</subject><subject>Networks</subject><subject>Optimization</subject><subject>Placement</subject><subject>Proposals</subject><subject>Relay</subject><subject>Relays</subject><subject>Sensors</subject><subject>Studies</subject><subject>Traffic control</subject><subject>Wireless communication</subject><subject>Wireless sensor networks</subject><issn>1536-1276</issn><issn>1558-2248</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqFkT1vFDEQhleISIRAS0NjUZBqD3_bS4eOQJAuEIlDKS2fMwaHXfvw-Ijy79nLIQoKqGY088xIr56ue8bogjE6vFpfLRecUrOgSijzoDtmStmec2kf7nuhe8aNftQ9RryhlBmt1HF3t64-ow8tlYzk0m-hIunJW_iZApDL0QeYIDcSSyXn0KCWr5Ch7JBcpQojIJLPkHHefoR2W-p3fE0uUk7TbiLLgo3cpvaNrFKEliaYRxlb9Sk3fNIdRT8iPP1dT7ov787Wy_N-9en9h-WbVR8417yPwoMQIW543EQVo-WRek2Z9NcbY2hUhkVqA9eacrmRXMnBSBOZDhB8uA7ipDs9_N3W8mMH2NyUMMA4-vscbqBCSyEN_y9pLdXGaLsnX_6TFFJqbjWdwRd_gTdlV_Oc11ktlVWcsRlaHKBQC2KF6LY1Tb7eOUbdXq2b1bq9Wnevdj54fjhIAPAHltzIYbDiF98OoEs</recordid><startdate>20070701</startdate><enddate>20070701</enddate><creator>Quanhong Wang</creator><creator>Kenan Xu</creator><creator>Takahara, G.</creator><creator>Hassanein, H.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20070701</creationdate><title>Transactions Papers - Device Placement for Heterogeneous Wireless Sensor Networks: Minimum Cost with Lifetime Constraints</title><author>Quanhong Wang ; Kenan Xu ; Takahara, G. ; Hassanein, H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2262-f3ae33cfb2fbf5ff82f0a6014adb770f571f08c266024b42549747f16cecacdc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Algorithms</topic><topic>Base stations</topic><topic>Computerized monitoring</topic><topic>Constraint optimization</topic><topic>Cost function</topic><topic>Councils</topic><topic>Devices</topic><topic>Information technology</topic><topic>Mathematical models</topic><topic>Networks</topic><topic>Optimization</topic><topic>Placement</topic><topic>Proposals</topic><topic>Relay</topic><topic>Relays</topic><topic>Sensors</topic><topic>Studies</topic><topic>Traffic control</topic><topic>Wireless communication</topic><topic>Wireless sensor networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Quanhong Wang</creatorcontrib><creatorcontrib>Kenan Xu</creatorcontrib><creatorcontrib>Takahara, G.</creatorcontrib><creatorcontrib>Hassanein, H.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library Online</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on wireless communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Quanhong Wang</au><au>Kenan Xu</au><au>Takahara, G.</au><au>Hassanein, H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transactions Papers - Device Placement for Heterogeneous Wireless Sensor Networks: Minimum Cost with Lifetime Constraints</atitle><jtitle>IEEE transactions on wireless communications</jtitle><stitle>TWC</stitle><date>2007-07-01</date><risdate>2007</risdate><volume>6</volume><issue>7</issue><spage>2444</spage><epage>2453</epage><pages>2444-2453</pages><issn>1536-1276</issn><eissn>1558-2248</eissn><coden>ITWCAX</coden><abstract>Device placement is a fundamental factor in determining the coverage, connectivity, cost and lifetime of a wireless sensor network (WSN). In this paper, we explore the problem of relay node placement in heterogeneous WSN. We formulate a generalized node placement optimization problem aimed at minimizing the network cost with constraints on lifetime and connectivity. Depending on the constraints, two representative scenarios of this problem are described. We characterize the first problem, where relay nodes are not energy constrained, as a minimum set covering problem. We further consider a more challenging scenario, where all nodes are energy limited. As an optimal solution to this problem is difficult to obtain, a two-phase approach is proposed, in which locally optimal design decisions are taken. The placement of the first phase relay nodes (FPRN), which are directly connected to sensor nodes (SN), is modeled as a minimum set covering problem. To ensure the relaying of the traffic from the FPRN to the base station, three heuristic schemes are proposed to place the second phase relay nodes (SPRN). Furthermore, a lower bound on the minimum number of SPRN required for connectivity is provided. The efficiency of our proposals is investigated by numerical examples.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TWC.2007.05357</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1536-1276 |
ispartof | IEEE transactions on wireless communications, 2007-07, Vol.6 (7), p.2444-2453 |
issn | 1536-1276 1558-2248 |
language | eng |
recordid | cdi_proquest_journals_864585211 |
source | IEEE Electronic Library Online |
subjects | Algorithms Base stations Computerized monitoring Constraint optimization Cost function Councils Devices Information technology Mathematical models Networks Optimization Placement Proposals Relay Relays Sensors Studies Traffic control Wireless communication Wireless sensor networks |
title | Transactions Papers - Device Placement for Heterogeneous Wireless Sensor Networks: Minimum Cost with Lifetime Constraints |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T15%3A04%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transactions%20Papers%20-%20Device%20Placement%20for%20Heterogeneous%20Wireless%20Sensor%20Networks:%20Minimum%20Cost%20with%20Lifetime%20Constraints&rft.jtitle=IEEE%20transactions%20on%20wireless%20communications&rft.au=Quanhong%20Wang&rft.date=2007-07-01&rft.volume=6&rft.issue=7&rft.spage=2444&rft.epage=2453&rft.pages=2444-2453&rft.issn=1536-1276&rft.eissn=1558-2248&rft.coden=ITWCAX&rft_id=info:doi/10.1109/TWC.2007.05357&rft_dat=%3Cproquest_RIE%3E34462860%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=864585211&rft_id=info:pmid/&rft_ieee_id=4274998&rfr_iscdi=true |