Transactions Papers - Device Placement for Heterogeneous Wireless Sensor Networks: Minimum Cost with Lifetime Constraints

Device placement is a fundamental factor in determining the coverage, connectivity, cost and lifetime of a wireless sensor network (WSN). In this paper, we explore the problem of relay node placement in heterogeneous WSN. We formulate a generalized node placement optimization problem aimed at minimi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on wireless communications 2007-07, Vol.6 (7), p.2444-2453
Hauptverfasser: Quanhong Wang, Kenan Xu, Takahara, G., Hassanein, H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2453
container_issue 7
container_start_page 2444
container_title IEEE transactions on wireless communications
container_volume 6
creator Quanhong Wang
Kenan Xu
Takahara, G.
Hassanein, H.
description Device placement is a fundamental factor in determining the coverage, connectivity, cost and lifetime of a wireless sensor network (WSN). In this paper, we explore the problem of relay node placement in heterogeneous WSN. We formulate a generalized node placement optimization problem aimed at minimizing the network cost with constraints on lifetime and connectivity. Depending on the constraints, two representative scenarios of this problem are described. We characterize the first problem, where relay nodes are not energy constrained, as a minimum set covering problem. We further consider a more challenging scenario, where all nodes are energy limited. As an optimal solution to this problem is difficult to obtain, a two-phase approach is proposed, in which locally optimal design decisions are taken. The placement of the first phase relay nodes (FPRN), which are directly connected to sensor nodes (SN), is modeled as a minimum set covering problem. To ensure the relaying of the traffic from the FPRN to the base station, three heuristic schemes are proposed to place the second phase relay nodes (SPRN). Furthermore, a lower bound on the minimum number of SPRN required for connectivity is provided. The efficiency of our proposals is investigated by numerical examples.
doi_str_mv 10.1109/TWC.2007.05357
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_864585211</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4274998</ieee_id><sourcerecordid>34462860</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2262-f3ae33cfb2fbf5ff82f0a6014adb770f571f08c266024b42549747f16cecacdc3</originalsourceid><addsrcrecordid>eNqFkT1vFDEQhleISIRAS0NjUZBqD3_bS4eOQJAuEIlDKS2fMwaHXfvw-Ijy79nLIQoKqGY088xIr56ue8bogjE6vFpfLRecUrOgSijzoDtmStmec2kf7nuhe8aNftQ9RryhlBmt1HF3t64-ow8tlYzk0m-hIunJW_iZApDL0QeYIDcSSyXn0KCWr5Ch7JBcpQojIJLPkHHefoR2W-p3fE0uUk7TbiLLgo3cpvaNrFKEliaYRxlb9Sk3fNIdRT8iPP1dT7ov787Wy_N-9en9h-WbVR8417yPwoMQIW543EQVo-WRek2Z9NcbY2hUhkVqA9eacrmRXMnBSBOZDhB8uA7ipDs9_N3W8mMH2NyUMMA4-vscbqBCSyEN_y9pLdXGaLsnX_6TFFJqbjWdwRd_gTdlV_Oc11ktlVWcsRlaHKBQC2KF6LY1Tb7eOUbdXq2b1bq9Wnevdj54fjhIAPAHltzIYbDiF98OoEs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>864585211</pqid></control><display><type>article</type><title>Transactions Papers - Device Placement for Heterogeneous Wireless Sensor Networks: Minimum Cost with Lifetime Constraints</title><source>IEEE Electronic Library Online</source><creator>Quanhong Wang ; Kenan Xu ; Takahara, G. ; Hassanein, H.</creator><creatorcontrib>Quanhong Wang ; Kenan Xu ; Takahara, G. ; Hassanein, H.</creatorcontrib><description>Device placement is a fundamental factor in determining the coverage, connectivity, cost and lifetime of a wireless sensor network (WSN). In this paper, we explore the problem of relay node placement in heterogeneous WSN. We formulate a generalized node placement optimization problem aimed at minimizing the network cost with constraints on lifetime and connectivity. Depending on the constraints, two representative scenarios of this problem are described. We characterize the first problem, where relay nodes are not energy constrained, as a minimum set covering problem. We further consider a more challenging scenario, where all nodes are energy limited. As an optimal solution to this problem is difficult to obtain, a two-phase approach is proposed, in which locally optimal design decisions are taken. The placement of the first phase relay nodes (FPRN), which are directly connected to sensor nodes (SN), is modeled as a minimum set covering problem. To ensure the relaying of the traffic from the FPRN to the base station, three heuristic schemes are proposed to place the second phase relay nodes (SPRN). Furthermore, a lower bound on the minimum number of SPRN required for connectivity is provided. The efficiency of our proposals is investigated by numerical examples.</description><identifier>ISSN: 1536-1276</identifier><identifier>EISSN: 1558-2248</identifier><identifier>DOI: 10.1109/TWC.2007.05357</identifier><identifier>CODEN: ITWCAX</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Base stations ; Computerized monitoring ; Constraint optimization ; Cost function ; Councils ; Devices ; Information technology ; Mathematical models ; Networks ; Optimization ; Placement ; Proposals ; Relay ; Relays ; Sensors ; Studies ; Traffic control ; Wireless communication ; Wireless sensor networks</subject><ispartof>IEEE transactions on wireless communications, 2007-07, Vol.6 (7), p.2444-2453</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2007</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2262-f3ae33cfb2fbf5ff82f0a6014adb770f571f08c266024b42549747f16cecacdc3</citedby><cites>FETCH-LOGICAL-c2262-f3ae33cfb2fbf5ff82f0a6014adb770f571f08c266024b42549747f16cecacdc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4274998$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4274998$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Quanhong Wang</creatorcontrib><creatorcontrib>Kenan Xu</creatorcontrib><creatorcontrib>Takahara, G.</creatorcontrib><creatorcontrib>Hassanein, H.</creatorcontrib><title>Transactions Papers - Device Placement for Heterogeneous Wireless Sensor Networks: Minimum Cost with Lifetime Constraints</title><title>IEEE transactions on wireless communications</title><addtitle>TWC</addtitle><description>Device placement is a fundamental factor in determining the coverage, connectivity, cost and lifetime of a wireless sensor network (WSN). In this paper, we explore the problem of relay node placement in heterogeneous WSN. We formulate a generalized node placement optimization problem aimed at minimizing the network cost with constraints on lifetime and connectivity. Depending on the constraints, two representative scenarios of this problem are described. We characterize the first problem, where relay nodes are not energy constrained, as a minimum set covering problem. We further consider a more challenging scenario, where all nodes are energy limited. As an optimal solution to this problem is difficult to obtain, a two-phase approach is proposed, in which locally optimal design decisions are taken. The placement of the first phase relay nodes (FPRN), which are directly connected to sensor nodes (SN), is modeled as a minimum set covering problem. To ensure the relaying of the traffic from the FPRN to the base station, three heuristic schemes are proposed to place the second phase relay nodes (SPRN). Furthermore, a lower bound on the minimum number of SPRN required for connectivity is provided. The efficiency of our proposals is investigated by numerical examples.</description><subject>Algorithms</subject><subject>Base stations</subject><subject>Computerized monitoring</subject><subject>Constraint optimization</subject><subject>Cost function</subject><subject>Councils</subject><subject>Devices</subject><subject>Information technology</subject><subject>Mathematical models</subject><subject>Networks</subject><subject>Optimization</subject><subject>Placement</subject><subject>Proposals</subject><subject>Relay</subject><subject>Relays</subject><subject>Sensors</subject><subject>Studies</subject><subject>Traffic control</subject><subject>Wireless communication</subject><subject>Wireless sensor networks</subject><issn>1536-1276</issn><issn>1558-2248</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqFkT1vFDEQhleISIRAS0NjUZBqD3_bS4eOQJAuEIlDKS2fMwaHXfvw-Ijy79nLIQoKqGY088xIr56ue8bogjE6vFpfLRecUrOgSijzoDtmStmec2kf7nuhe8aNftQ9RryhlBmt1HF3t64-ow8tlYzk0m-hIunJW_iZApDL0QeYIDcSSyXn0KCWr5Ch7JBcpQojIJLPkHHefoR2W-p3fE0uUk7TbiLLgo3cpvaNrFKEliaYRxlb9Sk3fNIdRT8iPP1dT7ov787Wy_N-9en9h-WbVR8417yPwoMQIW543EQVo-WRek2Z9NcbY2hUhkVqA9eacrmRXMnBSBOZDhB8uA7ipDs9_N3W8mMH2NyUMMA4-vscbqBCSyEN_y9pLdXGaLsnX_6TFFJqbjWdwRd_gTdlV_Oc11ktlVWcsRlaHKBQC2KF6LY1Tb7eOUbdXq2b1bq9Wnevdj54fjhIAPAHltzIYbDiF98OoEs</recordid><startdate>20070701</startdate><enddate>20070701</enddate><creator>Quanhong Wang</creator><creator>Kenan Xu</creator><creator>Takahara, G.</creator><creator>Hassanein, H.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20070701</creationdate><title>Transactions Papers - Device Placement for Heterogeneous Wireless Sensor Networks: Minimum Cost with Lifetime Constraints</title><author>Quanhong Wang ; Kenan Xu ; Takahara, G. ; Hassanein, H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2262-f3ae33cfb2fbf5ff82f0a6014adb770f571f08c266024b42549747f16cecacdc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Algorithms</topic><topic>Base stations</topic><topic>Computerized monitoring</topic><topic>Constraint optimization</topic><topic>Cost function</topic><topic>Councils</topic><topic>Devices</topic><topic>Information technology</topic><topic>Mathematical models</topic><topic>Networks</topic><topic>Optimization</topic><topic>Placement</topic><topic>Proposals</topic><topic>Relay</topic><topic>Relays</topic><topic>Sensors</topic><topic>Studies</topic><topic>Traffic control</topic><topic>Wireless communication</topic><topic>Wireless sensor networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Quanhong Wang</creatorcontrib><creatorcontrib>Kenan Xu</creatorcontrib><creatorcontrib>Takahara, G.</creatorcontrib><creatorcontrib>Hassanein, H.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library Online</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on wireless communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Quanhong Wang</au><au>Kenan Xu</au><au>Takahara, G.</au><au>Hassanein, H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transactions Papers - Device Placement for Heterogeneous Wireless Sensor Networks: Minimum Cost with Lifetime Constraints</atitle><jtitle>IEEE transactions on wireless communications</jtitle><stitle>TWC</stitle><date>2007-07-01</date><risdate>2007</risdate><volume>6</volume><issue>7</issue><spage>2444</spage><epage>2453</epage><pages>2444-2453</pages><issn>1536-1276</issn><eissn>1558-2248</eissn><coden>ITWCAX</coden><abstract>Device placement is a fundamental factor in determining the coverage, connectivity, cost and lifetime of a wireless sensor network (WSN). In this paper, we explore the problem of relay node placement in heterogeneous WSN. We formulate a generalized node placement optimization problem aimed at minimizing the network cost with constraints on lifetime and connectivity. Depending on the constraints, two representative scenarios of this problem are described. We characterize the first problem, where relay nodes are not energy constrained, as a minimum set covering problem. We further consider a more challenging scenario, where all nodes are energy limited. As an optimal solution to this problem is difficult to obtain, a two-phase approach is proposed, in which locally optimal design decisions are taken. The placement of the first phase relay nodes (FPRN), which are directly connected to sensor nodes (SN), is modeled as a minimum set covering problem. To ensure the relaying of the traffic from the FPRN to the base station, three heuristic schemes are proposed to place the second phase relay nodes (SPRN). Furthermore, a lower bound on the minimum number of SPRN required for connectivity is provided. The efficiency of our proposals is investigated by numerical examples.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TWC.2007.05357</doi><tpages>10</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1536-1276
ispartof IEEE transactions on wireless communications, 2007-07, Vol.6 (7), p.2444-2453
issn 1536-1276
1558-2248
language eng
recordid cdi_proquest_journals_864585211
source IEEE Electronic Library Online
subjects Algorithms
Base stations
Computerized monitoring
Constraint optimization
Cost function
Councils
Devices
Information technology
Mathematical models
Networks
Optimization
Placement
Proposals
Relay
Relays
Sensors
Studies
Traffic control
Wireless communication
Wireless sensor networks
title Transactions Papers - Device Placement for Heterogeneous Wireless Sensor Networks: Minimum Cost with Lifetime Constraints
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T15%3A04%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transactions%20Papers%20-%20Device%20Placement%20for%20Heterogeneous%20Wireless%20Sensor%20Networks:%20Minimum%20Cost%20with%20Lifetime%20Constraints&rft.jtitle=IEEE%20transactions%20on%20wireless%20communications&rft.au=Quanhong%20Wang&rft.date=2007-07-01&rft.volume=6&rft.issue=7&rft.spage=2444&rft.epage=2453&rft.pages=2444-2453&rft.issn=1536-1276&rft.eissn=1558-2248&rft.coden=ITWCAX&rft_id=info:doi/10.1109/TWC.2007.05357&rft_dat=%3Cproquest_RIE%3E34462860%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=864585211&rft_id=info:pmid/&rft_ieee_id=4274998&rfr_iscdi=true