Arthrodial Joint Markerless Cross-Parameterization and Biomechanical Visualization

Orthopedists invest significant amounts of effort and time trying to understand the biomechanics of arthrodial (gliding) joints. Although new image acquisition and processing methods currently generate richer-than-ever geometry and kinematic data sets that are individual specific, the computational...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics 2007-09, Vol.13 (5), p.1095-1104
Hauptverfasser: Marai, G.E., Grimm, C.M., Laidlaw, D.H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1104
container_issue 5
container_start_page 1095
container_title IEEE transactions on visualization and computer graphics
container_volume 13
creator Marai, G.E.
Grimm, C.M.
Laidlaw, D.H.
description Orthopedists invest significant amounts of effort and time trying to understand the biomechanics of arthrodial (gliding) joints. Although new image acquisition and processing methods currently generate richer-than-ever geometry and kinematic data sets that are individual specific, the computational and visualization tools needed to enable the comparative analysis and exploration of these data sets lag behind. In this paper, we present a framework that enables the cross-data-set visual exploration and analysis of arthrodial joint biomechanics. Central to our approach is a computer-vision-inspired markerless method for establishing pairwise correspondences between individual-specific geometry. Manifold models are subsequently defined and deformed from one individual-specific geometry to another such that the markerless correspondences are preserved while minimizing model distortion. The resulting mutually consistent parameterization and visualization allow the users to explore the similarities and differences between two data sets and to define meaningful quantitative measures. We present two applications of this framework to human-wrist data: articular cartilage transfer from cadaver data to in vivo data and cross-data-set kinematics analysis. The method allows our users to combine complementary geometries acquired through different modalities and thus overcome current imaging limitations. The results demonstrate that the technique is useful in the study of normal and injured anatomy and kinematics of arthrodial joints. In principle, the pairwise cross-parameterization method applies to all spherical topology data from the same class and should be particularly beneficial in instances where identifying salient object features is a nontrivial task.
doi_str_mv 10.1109/TVCG.2007.1063
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_863925423</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4276086</ieee_id><sourcerecordid>880672119</sourcerecordid><originalsourceid>FETCH-LOGICAL-c435t-12b3233157a7e698b4ebe883b6cbdba50cb2b943557b7b18d9012fd35d22ed9a3</originalsourceid><addsrcrecordid>eNqF0c1rFDEYBvBQFNuuXnspyOChPc365mPycayLrcqKpay9hmTmXZp2PtZk5qB_vRl2UfBgTwnk976B5yHkjMKSUjDvN_ermyUDUEsKkh-RE2oELaEC-SLfQamSSSaPyWlKjwBUCG1ekWOqJGPSwAm5u4rjQxya4NriyxD6sfjq4hPGFlMqVnFIqbx10XU4Ygy_3BiGvnB9U3wIQ4f1g-tDnSfvQ5pce3h_TV5uXZvwzeFckO_XHzerT-X6283n1dW6rAWvxpIyzxnntFJOoTTaC_SoNfey9o13FdSeeZNppbzyVDcGKNs2vGoYw8Y4viCX-727OPyYMI22C6nGtnU9DlOyBrjklVbwrNQapGKUmiwv_isVqByios9CLrISTGf47h_4OEyxz8FYLblhlcghLMhyj-o58Yhbu4uhc_GnpWDnnu3cs517tnPPeeDtYevkO2z-8kOxGZzvQUDEP8-CKQn5299n_qr1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>863925423</pqid></control><display><type>article</type><title>Arthrodial Joint Markerless Cross-Parameterization and Biomechanical Visualization</title><source>IEEE Electronic Library (IEL)</source><creator>Marai, G.E. ; Grimm, C.M. ; Laidlaw, D.H.</creator><creatorcontrib>Marai, G.E. ; Grimm, C.M. ; Laidlaw, D.H.</creatorcontrib><description>Orthopedists invest significant amounts of effort and time trying to understand the biomechanics of arthrodial (gliding) joints. Although new image acquisition and processing methods currently generate richer-than-ever geometry and kinematic data sets that are individual specific, the computational and visualization tools needed to enable the comparative analysis and exploration of these data sets lag behind. In this paper, we present a framework that enables the cross-data-set visual exploration and analysis of arthrodial joint biomechanics. Central to our approach is a computer-vision-inspired markerless method for establishing pairwise correspondences between individual-specific geometry. Manifold models are subsequently defined and deformed from one individual-specific geometry to another such that the markerless correspondences are preserved while minimizing model distortion. The resulting mutually consistent parameterization and visualization allow the users to explore the similarities and differences between two data sets and to define meaningful quantitative measures. We present two applications of this framework to human-wrist data: articular cartilage transfer from cadaver data to in vivo data and cross-data-set kinematics analysis. The method allows our users to combine complementary geometries acquired through different modalities and thus overcome current imaging limitations. The results demonstrate that the technique is useful in the study of normal and injured anatomy and kinematics of arthrodial joints. In principle, the pairwise cross-parameterization method applies to all spherical topology data from the same class and should be particularly beneficial in instances where identifying salient object features is a nontrivial task.</description><identifier>ISSN: 1077-2626</identifier><identifier>EISSN: 1941-0506</identifier><identifier>DOI: 10.1109/TVCG.2007.1063</identifier><identifier>PMID: 17622690</identifier><identifier>CODEN: ITVGEA</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; arthrodial joints ; Arthrography - methods ; Biomechanical Phenomena - methods ; Biomechanics ; biomedical visualization ; Cadaver ; Comparative analysis ; Computational geometry ; Computer Graphics ; Computer programs ; cross-parameterization ; Data visualization ; Deformable models ; Distortion measurement ; Exploration ; Geometry ; Humans ; Image analysis ; Imaging, Three-Dimensional - methods ; In vivo ; Kinematics ; Mathematical models ; Numerical Analysis, Computer-Assisted ; Pairwise shape correspondence ; Parametrization ; Pattern Recognition, Automated - methods ; Radiographic Image Enhancement - methods ; Radiographic Image Interpretation, Computer-Assisted - methods ; Reproducibility of Results ; Sensitivity and Specificity ; Signal Processing, Computer-Assisted ; Solid modeling ; Studies ; Tomography, X-Ray Computed - methods ; User-Computer Interface ; Visualization ; Whole Body Imaging - methods</subject><ispartof>IEEE transactions on visualization and computer graphics, 2007-09, Vol.13 (5), p.1095-1104</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2007</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c435t-12b3233157a7e698b4ebe883b6cbdba50cb2b943557b7b18d9012fd35d22ed9a3</citedby><cites>FETCH-LOGICAL-c435t-12b3233157a7e698b4ebe883b6cbdba50cb2b943557b7b18d9012fd35d22ed9a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4276086$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4276086$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17622690$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Marai, G.E.</creatorcontrib><creatorcontrib>Grimm, C.M.</creatorcontrib><creatorcontrib>Laidlaw, D.H.</creatorcontrib><title>Arthrodial Joint Markerless Cross-Parameterization and Biomechanical Visualization</title><title>IEEE transactions on visualization and computer graphics</title><addtitle>TVCG</addtitle><addtitle>IEEE Trans Vis Comput Graph</addtitle><description>Orthopedists invest significant amounts of effort and time trying to understand the biomechanics of arthrodial (gliding) joints. Although new image acquisition and processing methods currently generate richer-than-ever geometry and kinematic data sets that are individual specific, the computational and visualization tools needed to enable the comparative analysis and exploration of these data sets lag behind. In this paper, we present a framework that enables the cross-data-set visual exploration and analysis of arthrodial joint biomechanics. Central to our approach is a computer-vision-inspired markerless method for establishing pairwise correspondences between individual-specific geometry. Manifold models are subsequently defined and deformed from one individual-specific geometry to another such that the markerless correspondences are preserved while minimizing model distortion. The resulting mutually consistent parameterization and visualization allow the users to explore the similarities and differences between two data sets and to define meaningful quantitative measures. We present two applications of this framework to human-wrist data: articular cartilage transfer from cadaver data to in vivo data and cross-data-set kinematics analysis. The method allows our users to combine complementary geometries acquired through different modalities and thus overcome current imaging limitations. The results demonstrate that the technique is useful in the study of normal and injured anatomy and kinematics of arthrodial joints. In principle, the pairwise cross-parameterization method applies to all spherical topology data from the same class and should be particularly beneficial in instances where identifying salient object features is a nontrivial task.</description><subject>Algorithms</subject><subject>arthrodial joints</subject><subject>Arthrography - methods</subject><subject>Biomechanical Phenomena - methods</subject><subject>Biomechanics</subject><subject>biomedical visualization</subject><subject>Cadaver</subject><subject>Comparative analysis</subject><subject>Computational geometry</subject><subject>Computer Graphics</subject><subject>Computer programs</subject><subject>cross-parameterization</subject><subject>Data visualization</subject><subject>Deformable models</subject><subject>Distortion measurement</subject><subject>Exploration</subject><subject>Geometry</subject><subject>Humans</subject><subject>Image analysis</subject><subject>Imaging, Three-Dimensional - methods</subject><subject>In vivo</subject><subject>Kinematics</subject><subject>Mathematical models</subject><subject>Numerical Analysis, Computer-Assisted</subject><subject>Pairwise shape correspondence</subject><subject>Parametrization</subject><subject>Pattern Recognition, Automated - methods</subject><subject>Radiographic Image Enhancement - methods</subject><subject>Radiographic Image Interpretation, Computer-Assisted - methods</subject><subject>Reproducibility of Results</subject><subject>Sensitivity and Specificity</subject><subject>Signal Processing, Computer-Assisted</subject><subject>Solid modeling</subject><subject>Studies</subject><subject>Tomography, X-Ray Computed - methods</subject><subject>User-Computer Interface</subject><subject>Visualization</subject><subject>Whole Body Imaging - methods</subject><issn>1077-2626</issn><issn>1941-0506</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNqF0c1rFDEYBvBQFNuuXnspyOChPc365mPycayLrcqKpay9hmTmXZp2PtZk5qB_vRl2UfBgTwnk976B5yHkjMKSUjDvN_ermyUDUEsKkh-RE2oELaEC-SLfQamSSSaPyWlKjwBUCG1ekWOqJGPSwAm5u4rjQxya4NriyxD6sfjq4hPGFlMqVnFIqbx10XU4Ygy_3BiGvnB9U3wIQ4f1g-tDnSfvQ5pce3h_TV5uXZvwzeFckO_XHzerT-X6283n1dW6rAWvxpIyzxnntFJOoTTaC_SoNfey9o13FdSeeZNppbzyVDcGKNs2vGoYw8Y4viCX-727OPyYMI22C6nGtnU9DlOyBrjklVbwrNQapGKUmiwv_isVqByios9CLrISTGf47h_4OEyxz8FYLblhlcghLMhyj-o58Yhbu4uhc_GnpWDnnu3cs517tnPPeeDtYevkO2z-8kOxGZzvQUDEP8-CKQn5299n_qr1</recordid><startdate>20070901</startdate><enddate>20070901</enddate><creator>Marai, G.E.</creator><creator>Grimm, C.M.</creator><creator>Laidlaw, D.H.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope><scope>7X8</scope></search><sort><creationdate>20070901</creationdate><title>Arthrodial Joint Markerless Cross-Parameterization and Biomechanical Visualization</title><author>Marai, G.E. ; Grimm, C.M. ; Laidlaw, D.H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c435t-12b3233157a7e698b4ebe883b6cbdba50cb2b943557b7b18d9012fd35d22ed9a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Algorithms</topic><topic>arthrodial joints</topic><topic>Arthrography - methods</topic><topic>Biomechanical Phenomena - methods</topic><topic>Biomechanics</topic><topic>biomedical visualization</topic><topic>Cadaver</topic><topic>Comparative analysis</topic><topic>Computational geometry</topic><topic>Computer Graphics</topic><topic>Computer programs</topic><topic>cross-parameterization</topic><topic>Data visualization</topic><topic>Deformable models</topic><topic>Distortion measurement</topic><topic>Exploration</topic><topic>Geometry</topic><topic>Humans</topic><topic>Image analysis</topic><topic>Imaging, Three-Dimensional - methods</topic><topic>In vivo</topic><topic>Kinematics</topic><topic>Mathematical models</topic><topic>Numerical Analysis, Computer-Assisted</topic><topic>Pairwise shape correspondence</topic><topic>Parametrization</topic><topic>Pattern Recognition, Automated - methods</topic><topic>Radiographic Image Enhancement - methods</topic><topic>Radiographic Image Interpretation, Computer-Assisted - methods</topic><topic>Reproducibility of Results</topic><topic>Sensitivity and Specificity</topic><topic>Signal Processing, Computer-Assisted</topic><topic>Solid modeling</topic><topic>Studies</topic><topic>Tomography, X-Ray Computed - methods</topic><topic>User-Computer Interface</topic><topic>Visualization</topic><topic>Whole Body Imaging - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marai, G.E.</creatorcontrib><creatorcontrib>Grimm, C.M.</creatorcontrib><creatorcontrib>Laidlaw, D.H.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on visualization and computer graphics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Marai, G.E.</au><au>Grimm, C.M.</au><au>Laidlaw, D.H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Arthrodial Joint Markerless Cross-Parameterization and Biomechanical Visualization</atitle><jtitle>IEEE transactions on visualization and computer graphics</jtitle><stitle>TVCG</stitle><addtitle>IEEE Trans Vis Comput Graph</addtitle><date>2007-09-01</date><risdate>2007</risdate><volume>13</volume><issue>5</issue><spage>1095</spage><epage>1104</epage><pages>1095-1104</pages><issn>1077-2626</issn><eissn>1941-0506</eissn><coden>ITVGEA</coden><abstract>Orthopedists invest significant amounts of effort and time trying to understand the biomechanics of arthrodial (gliding) joints. Although new image acquisition and processing methods currently generate richer-than-ever geometry and kinematic data sets that are individual specific, the computational and visualization tools needed to enable the comparative analysis and exploration of these data sets lag behind. In this paper, we present a framework that enables the cross-data-set visual exploration and analysis of arthrodial joint biomechanics. Central to our approach is a computer-vision-inspired markerless method for establishing pairwise correspondences between individual-specific geometry. Manifold models are subsequently defined and deformed from one individual-specific geometry to another such that the markerless correspondences are preserved while minimizing model distortion. The resulting mutually consistent parameterization and visualization allow the users to explore the similarities and differences between two data sets and to define meaningful quantitative measures. We present two applications of this framework to human-wrist data: articular cartilage transfer from cadaver data to in vivo data and cross-data-set kinematics analysis. The method allows our users to combine complementary geometries acquired through different modalities and thus overcome current imaging limitations. The results demonstrate that the technique is useful in the study of normal and injured anatomy and kinematics of arthrodial joints. In principle, the pairwise cross-parameterization method applies to all spherical topology data from the same class and should be particularly beneficial in instances where identifying salient object features is a nontrivial task.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>17622690</pmid><doi>10.1109/TVCG.2007.1063</doi><tpages>10</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1077-2626
ispartof IEEE transactions on visualization and computer graphics, 2007-09, Vol.13 (5), p.1095-1104
issn 1077-2626
1941-0506
language eng
recordid cdi_proquest_journals_863925423
source IEEE Electronic Library (IEL)
subjects Algorithms
arthrodial joints
Arthrography - methods
Biomechanical Phenomena - methods
Biomechanics
biomedical visualization
Cadaver
Comparative analysis
Computational geometry
Computer Graphics
Computer programs
cross-parameterization
Data visualization
Deformable models
Distortion measurement
Exploration
Geometry
Humans
Image analysis
Imaging, Three-Dimensional - methods
In vivo
Kinematics
Mathematical models
Numerical Analysis, Computer-Assisted
Pairwise shape correspondence
Parametrization
Pattern Recognition, Automated - methods
Radiographic Image Enhancement - methods
Radiographic Image Interpretation, Computer-Assisted - methods
Reproducibility of Results
Sensitivity and Specificity
Signal Processing, Computer-Assisted
Solid modeling
Studies
Tomography, X-Ray Computed - methods
User-Computer Interface
Visualization
Whole Body Imaging - methods
title Arthrodial Joint Markerless Cross-Parameterization and Biomechanical Visualization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T20%3A22%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Arthrodial%20Joint%20Markerless%20Cross-Parameterization%20and%20Biomechanical%20Visualization&rft.jtitle=IEEE%20transactions%20on%20visualization%20and%20computer%20graphics&rft.au=Marai,%20G.E.&rft.date=2007-09-01&rft.volume=13&rft.issue=5&rft.spage=1095&rft.epage=1104&rft.pages=1095-1104&rft.issn=1077-2626&rft.eissn=1941-0506&rft.coden=ITVGEA&rft_id=info:doi/10.1109/TVCG.2007.1063&rft_dat=%3Cproquest_RIE%3E880672119%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=863925423&rft_id=info:pmid/17622690&rft_ieee_id=4276086&rfr_iscdi=true