Arthrodial Joint Markerless Cross-Parameterization and Biomechanical Visualization
Orthopedists invest significant amounts of effort and time trying to understand the biomechanics of arthrodial (gliding) joints. Although new image acquisition and processing methods currently generate richer-than-ever geometry and kinematic data sets that are individual specific, the computational...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on visualization and computer graphics 2007-09, Vol.13 (5), p.1095-1104 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1104 |
---|---|
container_issue | 5 |
container_start_page | 1095 |
container_title | IEEE transactions on visualization and computer graphics |
container_volume | 13 |
creator | Marai, G.E. Grimm, C.M. Laidlaw, D.H. |
description | Orthopedists invest significant amounts of effort and time trying to understand the biomechanics of arthrodial (gliding) joints. Although new image acquisition and processing methods currently generate richer-than-ever geometry and kinematic data sets that are individual specific, the computational and visualization tools needed to enable the comparative analysis and exploration of these data sets lag behind. In this paper, we present a framework that enables the cross-data-set visual exploration and analysis of arthrodial joint biomechanics. Central to our approach is a computer-vision-inspired markerless method for establishing pairwise correspondences between individual-specific geometry. Manifold models are subsequently defined and deformed from one individual-specific geometry to another such that the markerless correspondences are preserved while minimizing model distortion. The resulting mutually consistent parameterization and visualization allow the users to explore the similarities and differences between two data sets and to define meaningful quantitative measures. We present two applications of this framework to human-wrist data: articular cartilage transfer from cadaver data to in vivo data and cross-data-set kinematics analysis. The method allows our users to combine complementary geometries acquired through different modalities and thus overcome current imaging limitations. The results demonstrate that the technique is useful in the study of normal and injured anatomy and kinematics of arthrodial joints. In principle, the pairwise cross-parameterization method applies to all spherical topology data from the same class and should be particularly beneficial in instances where identifying salient object features is a nontrivial task. |
doi_str_mv | 10.1109/TVCG.2007.1063 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_863925423</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4276086</ieee_id><sourcerecordid>880672119</sourcerecordid><originalsourceid>FETCH-LOGICAL-c435t-12b3233157a7e698b4ebe883b6cbdba50cb2b943557b7b18d9012fd35d22ed9a3</originalsourceid><addsrcrecordid>eNqF0c1rFDEYBvBQFNuuXnspyOChPc365mPycayLrcqKpay9hmTmXZp2PtZk5qB_vRl2UfBgTwnk976B5yHkjMKSUjDvN_ermyUDUEsKkh-RE2oELaEC-SLfQamSSSaPyWlKjwBUCG1ekWOqJGPSwAm5u4rjQxya4NriyxD6sfjq4hPGFlMqVnFIqbx10XU4Ygy_3BiGvnB9U3wIQ4f1g-tDnSfvQ5pce3h_TV5uXZvwzeFckO_XHzerT-X6283n1dW6rAWvxpIyzxnntFJOoTTaC_SoNfey9o13FdSeeZNppbzyVDcGKNs2vGoYw8Y4viCX-727OPyYMI22C6nGtnU9DlOyBrjklVbwrNQapGKUmiwv_isVqByios9CLrISTGf47h_4OEyxz8FYLblhlcghLMhyj-o58Yhbu4uhc_GnpWDnnu3cs517tnPPeeDtYevkO2z-8kOxGZzvQUDEP8-CKQn5299n_qr1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>863925423</pqid></control><display><type>article</type><title>Arthrodial Joint Markerless Cross-Parameterization and Biomechanical Visualization</title><source>IEEE Electronic Library (IEL)</source><creator>Marai, G.E. ; Grimm, C.M. ; Laidlaw, D.H.</creator><creatorcontrib>Marai, G.E. ; Grimm, C.M. ; Laidlaw, D.H.</creatorcontrib><description>Orthopedists invest significant amounts of effort and time trying to understand the biomechanics of arthrodial (gliding) joints. Although new image acquisition and processing methods currently generate richer-than-ever geometry and kinematic data sets that are individual specific, the computational and visualization tools needed to enable the comparative analysis and exploration of these data sets lag behind. In this paper, we present a framework that enables the cross-data-set visual exploration and analysis of arthrodial joint biomechanics. Central to our approach is a computer-vision-inspired markerless method for establishing pairwise correspondences between individual-specific geometry. Manifold models are subsequently defined and deformed from one individual-specific geometry to another such that the markerless correspondences are preserved while minimizing model distortion. The resulting mutually consistent parameterization and visualization allow the users to explore the similarities and differences between two data sets and to define meaningful quantitative measures. We present two applications of this framework to human-wrist data: articular cartilage transfer from cadaver data to in vivo data and cross-data-set kinematics analysis. The method allows our users to combine complementary geometries acquired through different modalities and thus overcome current imaging limitations. The results demonstrate that the technique is useful in the study of normal and injured anatomy and kinematics of arthrodial joints. In principle, the pairwise cross-parameterization method applies to all spherical topology data from the same class and should be particularly beneficial in instances where identifying salient object features is a nontrivial task.</description><identifier>ISSN: 1077-2626</identifier><identifier>EISSN: 1941-0506</identifier><identifier>DOI: 10.1109/TVCG.2007.1063</identifier><identifier>PMID: 17622690</identifier><identifier>CODEN: ITVGEA</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; arthrodial joints ; Arthrography - methods ; Biomechanical Phenomena - methods ; Biomechanics ; biomedical visualization ; Cadaver ; Comparative analysis ; Computational geometry ; Computer Graphics ; Computer programs ; cross-parameterization ; Data visualization ; Deformable models ; Distortion measurement ; Exploration ; Geometry ; Humans ; Image analysis ; Imaging, Three-Dimensional - methods ; In vivo ; Kinematics ; Mathematical models ; Numerical Analysis, Computer-Assisted ; Pairwise shape correspondence ; Parametrization ; Pattern Recognition, Automated - methods ; Radiographic Image Enhancement - methods ; Radiographic Image Interpretation, Computer-Assisted - methods ; Reproducibility of Results ; Sensitivity and Specificity ; Signal Processing, Computer-Assisted ; Solid modeling ; Studies ; Tomography, X-Ray Computed - methods ; User-Computer Interface ; Visualization ; Whole Body Imaging - methods</subject><ispartof>IEEE transactions on visualization and computer graphics, 2007-09, Vol.13 (5), p.1095-1104</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2007</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c435t-12b3233157a7e698b4ebe883b6cbdba50cb2b943557b7b18d9012fd35d22ed9a3</citedby><cites>FETCH-LOGICAL-c435t-12b3233157a7e698b4ebe883b6cbdba50cb2b943557b7b18d9012fd35d22ed9a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4276086$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4276086$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17622690$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Marai, G.E.</creatorcontrib><creatorcontrib>Grimm, C.M.</creatorcontrib><creatorcontrib>Laidlaw, D.H.</creatorcontrib><title>Arthrodial Joint Markerless Cross-Parameterization and Biomechanical Visualization</title><title>IEEE transactions on visualization and computer graphics</title><addtitle>TVCG</addtitle><addtitle>IEEE Trans Vis Comput Graph</addtitle><description>Orthopedists invest significant amounts of effort and time trying to understand the biomechanics of arthrodial (gliding) joints. Although new image acquisition and processing methods currently generate richer-than-ever geometry and kinematic data sets that are individual specific, the computational and visualization tools needed to enable the comparative analysis and exploration of these data sets lag behind. In this paper, we present a framework that enables the cross-data-set visual exploration and analysis of arthrodial joint biomechanics. Central to our approach is a computer-vision-inspired markerless method for establishing pairwise correspondences between individual-specific geometry. Manifold models are subsequently defined and deformed from one individual-specific geometry to another such that the markerless correspondences are preserved while minimizing model distortion. The resulting mutually consistent parameterization and visualization allow the users to explore the similarities and differences between two data sets and to define meaningful quantitative measures. We present two applications of this framework to human-wrist data: articular cartilage transfer from cadaver data to in vivo data and cross-data-set kinematics analysis. The method allows our users to combine complementary geometries acquired through different modalities and thus overcome current imaging limitations. The results demonstrate that the technique is useful in the study of normal and injured anatomy and kinematics of arthrodial joints. In principle, the pairwise cross-parameterization method applies to all spherical topology data from the same class and should be particularly beneficial in instances where identifying salient object features is a nontrivial task.</description><subject>Algorithms</subject><subject>arthrodial joints</subject><subject>Arthrography - methods</subject><subject>Biomechanical Phenomena - methods</subject><subject>Biomechanics</subject><subject>biomedical visualization</subject><subject>Cadaver</subject><subject>Comparative analysis</subject><subject>Computational geometry</subject><subject>Computer Graphics</subject><subject>Computer programs</subject><subject>cross-parameterization</subject><subject>Data visualization</subject><subject>Deformable models</subject><subject>Distortion measurement</subject><subject>Exploration</subject><subject>Geometry</subject><subject>Humans</subject><subject>Image analysis</subject><subject>Imaging, Three-Dimensional - methods</subject><subject>In vivo</subject><subject>Kinematics</subject><subject>Mathematical models</subject><subject>Numerical Analysis, Computer-Assisted</subject><subject>Pairwise shape correspondence</subject><subject>Parametrization</subject><subject>Pattern Recognition, Automated - methods</subject><subject>Radiographic Image Enhancement - methods</subject><subject>Radiographic Image Interpretation, Computer-Assisted - methods</subject><subject>Reproducibility of Results</subject><subject>Sensitivity and Specificity</subject><subject>Signal Processing, Computer-Assisted</subject><subject>Solid modeling</subject><subject>Studies</subject><subject>Tomography, X-Ray Computed - methods</subject><subject>User-Computer Interface</subject><subject>Visualization</subject><subject>Whole Body Imaging - methods</subject><issn>1077-2626</issn><issn>1941-0506</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNqF0c1rFDEYBvBQFNuuXnspyOChPc365mPycayLrcqKpay9hmTmXZp2PtZk5qB_vRl2UfBgTwnk976B5yHkjMKSUjDvN_ermyUDUEsKkh-RE2oELaEC-SLfQamSSSaPyWlKjwBUCG1ekWOqJGPSwAm5u4rjQxya4NriyxD6sfjq4hPGFlMqVnFIqbx10XU4Ygy_3BiGvnB9U3wIQ4f1g-tDnSfvQ5pce3h_TV5uXZvwzeFckO_XHzerT-X6283n1dW6rAWvxpIyzxnntFJOoTTaC_SoNfey9o13FdSeeZNppbzyVDcGKNs2vGoYw8Y4viCX-727OPyYMI22C6nGtnU9DlOyBrjklVbwrNQapGKUmiwv_isVqByios9CLrISTGf47h_4OEyxz8FYLblhlcghLMhyj-o58Yhbu4uhc_GnpWDnnu3cs517tnPPeeDtYevkO2z-8kOxGZzvQUDEP8-CKQn5299n_qr1</recordid><startdate>20070901</startdate><enddate>20070901</enddate><creator>Marai, G.E.</creator><creator>Grimm, C.M.</creator><creator>Laidlaw, D.H.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope><scope>7X8</scope></search><sort><creationdate>20070901</creationdate><title>Arthrodial Joint Markerless Cross-Parameterization and Biomechanical Visualization</title><author>Marai, G.E. ; Grimm, C.M. ; Laidlaw, D.H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c435t-12b3233157a7e698b4ebe883b6cbdba50cb2b943557b7b18d9012fd35d22ed9a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Algorithms</topic><topic>arthrodial joints</topic><topic>Arthrography - methods</topic><topic>Biomechanical Phenomena - methods</topic><topic>Biomechanics</topic><topic>biomedical visualization</topic><topic>Cadaver</topic><topic>Comparative analysis</topic><topic>Computational geometry</topic><topic>Computer Graphics</topic><topic>Computer programs</topic><topic>cross-parameterization</topic><topic>Data visualization</topic><topic>Deformable models</topic><topic>Distortion measurement</topic><topic>Exploration</topic><topic>Geometry</topic><topic>Humans</topic><topic>Image analysis</topic><topic>Imaging, Three-Dimensional - methods</topic><topic>In vivo</topic><topic>Kinematics</topic><topic>Mathematical models</topic><topic>Numerical Analysis, Computer-Assisted</topic><topic>Pairwise shape correspondence</topic><topic>Parametrization</topic><topic>Pattern Recognition, Automated - methods</topic><topic>Radiographic Image Enhancement - methods</topic><topic>Radiographic Image Interpretation, Computer-Assisted - methods</topic><topic>Reproducibility of Results</topic><topic>Sensitivity and Specificity</topic><topic>Signal Processing, Computer-Assisted</topic><topic>Solid modeling</topic><topic>Studies</topic><topic>Tomography, X-Ray Computed - methods</topic><topic>User-Computer Interface</topic><topic>Visualization</topic><topic>Whole Body Imaging - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marai, G.E.</creatorcontrib><creatorcontrib>Grimm, C.M.</creatorcontrib><creatorcontrib>Laidlaw, D.H.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on visualization and computer graphics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Marai, G.E.</au><au>Grimm, C.M.</au><au>Laidlaw, D.H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Arthrodial Joint Markerless Cross-Parameterization and Biomechanical Visualization</atitle><jtitle>IEEE transactions on visualization and computer graphics</jtitle><stitle>TVCG</stitle><addtitle>IEEE Trans Vis Comput Graph</addtitle><date>2007-09-01</date><risdate>2007</risdate><volume>13</volume><issue>5</issue><spage>1095</spage><epage>1104</epage><pages>1095-1104</pages><issn>1077-2626</issn><eissn>1941-0506</eissn><coden>ITVGEA</coden><abstract>Orthopedists invest significant amounts of effort and time trying to understand the biomechanics of arthrodial (gliding) joints. Although new image acquisition and processing methods currently generate richer-than-ever geometry and kinematic data sets that are individual specific, the computational and visualization tools needed to enable the comparative analysis and exploration of these data sets lag behind. In this paper, we present a framework that enables the cross-data-set visual exploration and analysis of arthrodial joint biomechanics. Central to our approach is a computer-vision-inspired markerless method for establishing pairwise correspondences between individual-specific geometry. Manifold models are subsequently defined and deformed from one individual-specific geometry to another such that the markerless correspondences are preserved while minimizing model distortion. The resulting mutually consistent parameterization and visualization allow the users to explore the similarities and differences between two data sets and to define meaningful quantitative measures. We present two applications of this framework to human-wrist data: articular cartilage transfer from cadaver data to in vivo data and cross-data-set kinematics analysis. The method allows our users to combine complementary geometries acquired through different modalities and thus overcome current imaging limitations. The results demonstrate that the technique is useful in the study of normal and injured anatomy and kinematics of arthrodial joints. In principle, the pairwise cross-parameterization method applies to all spherical topology data from the same class and should be particularly beneficial in instances where identifying salient object features is a nontrivial task.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>17622690</pmid><doi>10.1109/TVCG.2007.1063</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1077-2626 |
ispartof | IEEE transactions on visualization and computer graphics, 2007-09, Vol.13 (5), p.1095-1104 |
issn | 1077-2626 1941-0506 |
language | eng |
recordid | cdi_proquest_journals_863925423 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms arthrodial joints Arthrography - methods Biomechanical Phenomena - methods Biomechanics biomedical visualization Cadaver Comparative analysis Computational geometry Computer Graphics Computer programs cross-parameterization Data visualization Deformable models Distortion measurement Exploration Geometry Humans Image analysis Imaging, Three-Dimensional - methods In vivo Kinematics Mathematical models Numerical Analysis, Computer-Assisted Pairwise shape correspondence Parametrization Pattern Recognition, Automated - methods Radiographic Image Enhancement - methods Radiographic Image Interpretation, Computer-Assisted - methods Reproducibility of Results Sensitivity and Specificity Signal Processing, Computer-Assisted Solid modeling Studies Tomography, X-Ray Computed - methods User-Computer Interface Visualization Whole Body Imaging - methods |
title | Arthrodial Joint Markerless Cross-Parameterization and Biomechanical Visualization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T20%3A22%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Arthrodial%20Joint%20Markerless%20Cross-Parameterization%20and%20Biomechanical%20Visualization&rft.jtitle=IEEE%20transactions%20on%20visualization%20and%20computer%20graphics&rft.au=Marai,%20G.E.&rft.date=2007-09-01&rft.volume=13&rft.issue=5&rft.spage=1095&rft.epage=1104&rft.pages=1095-1104&rft.issn=1077-2626&rft.eissn=1941-0506&rft.coden=ITVGEA&rft_id=info:doi/10.1109/TVCG.2007.1063&rft_dat=%3Cproquest_RIE%3E880672119%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=863925423&rft_id=info:pmid/17622690&rft_ieee_id=4276086&rfr_iscdi=true |