Self-Monitoring Ultrasonic Gas Flow Meter Based on Vortex and Correlation Method
Ultrasound is advantageous for gas flow velocity measurements, owing to its high sensitivity to all kinds of turbulences in the streaming fluid. The cross-correlation method and vortex measurement behind a bluff body have been proven to be good. The most important and difficult problem is ultrasound...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on instrumentation and measurement 2007-12, Vol.56 (6), p.2420-2424 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2424 |
---|---|
container_issue | 6 |
container_start_page | 2420 |
container_title | IEEE transactions on instrumentation and measurement |
container_volume | 56 |
creator | Yaoying Lin Hans, V. |
description | Ultrasound is advantageous for gas flow velocity measurements, owing to its high sensitivity to all kinds of turbulences in the streaming fluid. The cross-correlation method and vortex measurement behind a bluff body have been proven to be good. The most important and difficult problem is ultrasound signal processing. A complex modulated signal has be demodulated by undersampling. The real and imaginary parts of the complex signal can be determined by Hilbert transformation. The demodulated phase or amplitude signal can be applied to cross-correlation functions for the detection of flow velocity. The vortex frequency can be detected by a simple analog signal processing device. The combination of vortex and cross-correlation measurements results in a self-monitoring system. The pattern of a group of vortices is used to determine the transition time of the fluid between two sensor pairs. Measurement results show that the relative error of gas flow velocity with the bluff body is evidently smaller than that without the bluff body. |
doi_str_mv | 10.1109/TIM.2007.908137 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_863786889</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4389115</ieee_id><sourcerecordid>2331911861</sourcerecordid><originalsourceid>FETCH-LOGICAL-c320t-b0afc84313b226347adc1c6f00c29ef533a6dd62c029fdf2befb142d96607bf73</originalsourceid><addsrcrecordid>eNpdkDFPwzAQRi0EEqUwM7BYLExpz3ZiOyNUtCC1AomW1XIcG1KlcbFTAf8eV0UMTKc7ve909xC6JDAiBMrx8nExogBiVIIkTByhASkKkZWc02M0ACAyK_OCn6KzGNeQQJ6LAXp-sa3LFr5reh-a7g2v2j7omHqDZzriaes_8cL2NuA7HW2NfYdffejtF9ZdjSc-BNvqvknjRL37-hydON1Ge_Fbh2g1vV9OHrL50-xxcjvPDKPQZxVoZ2TOCKso5SwXujbEcAdgaGldwZjmdc2pAVq62tHKuorktE7vgKicYEN0c9i7Df5jZ2OvNk00tm11Z_0uKikKyFleQCKv_5FrvwtdOk5JzoTkUpYJGh8gE3yMwTq1Dc1Gh29FQO39quRX7f2qg9-UuDokGmvtH50zWRJSsB-4H3XS</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>863786889</pqid></control><display><type>article</type><title>Self-Monitoring Ultrasonic Gas Flow Meter Based on Vortex and Correlation Method</title><source>IEEE Electronic Library (IEL)</source><creator>Yaoying Lin ; Hans, V.</creator><creatorcontrib>Yaoying Lin ; Hans, V.</creatorcontrib><description>Ultrasound is advantageous for gas flow velocity measurements, owing to its high sensitivity to all kinds of turbulences in the streaming fluid. The cross-correlation method and vortex measurement behind a bluff body have been proven to be good. The most important and difficult problem is ultrasound signal processing. A complex modulated signal has be demodulated by undersampling. The real and imaginary parts of the complex signal can be determined by Hilbert transformation. The demodulated phase or amplitude signal can be applied to cross-correlation functions for the detection of flow velocity. The vortex frequency can be detected by a simple analog signal processing device. The combination of vortex and cross-correlation measurements results in a self-monitoring system. The pattern of a group of vortices is used to determine the transition time of the fluid between two sensor pairs. Measurement results show that the relative error of gas flow velocity with the bluff body is evidently smaller than that without the bluff body.</description><identifier>ISSN: 0018-9456</identifier><identifier>EISSN: 1557-9662</identifier><identifier>DOI: 10.1109/TIM.2007.908137</identifier><identifier>CODEN: IEIMAO</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Bluff bodies ; Correlation ; Flow velocity ; Fluid dynamics ; Fluid flow ; Fluid flow measurement ; Fluids ; Frequency ; Gas flow ; Monitoring systems ; Phase detection ; self-monitoring system ; Signal processing ; Streaming media ; Turbulence ; Turbulent flow ; Ultrasonic imaging ; Ultrasonic variables measurement ; ultrasound ; Velocity measurement ; vortex ; Vortices</subject><ispartof>IEEE transactions on instrumentation and measurement, 2007-12, Vol.56 (6), p.2420-2424</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2007</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c320t-b0afc84313b226347adc1c6f00c29ef533a6dd62c029fdf2befb142d96607bf73</citedby><cites>FETCH-LOGICAL-c320t-b0afc84313b226347adc1c6f00c29ef533a6dd62c029fdf2befb142d96607bf73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4389115$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4389115$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yaoying Lin</creatorcontrib><creatorcontrib>Hans, V.</creatorcontrib><title>Self-Monitoring Ultrasonic Gas Flow Meter Based on Vortex and Correlation Method</title><title>IEEE transactions on instrumentation and measurement</title><addtitle>TIM</addtitle><description>Ultrasound is advantageous for gas flow velocity measurements, owing to its high sensitivity to all kinds of turbulences in the streaming fluid. The cross-correlation method and vortex measurement behind a bluff body have been proven to be good. The most important and difficult problem is ultrasound signal processing. A complex modulated signal has be demodulated by undersampling. The real and imaginary parts of the complex signal can be determined by Hilbert transformation. The demodulated phase or amplitude signal can be applied to cross-correlation functions for the detection of flow velocity. The vortex frequency can be detected by a simple analog signal processing device. The combination of vortex and cross-correlation measurements results in a self-monitoring system. The pattern of a group of vortices is used to determine the transition time of the fluid between two sensor pairs. Measurement results show that the relative error of gas flow velocity with the bluff body is evidently smaller than that without the bluff body.</description><subject>Bluff bodies</subject><subject>Correlation</subject><subject>Flow velocity</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Fluid flow measurement</subject><subject>Fluids</subject><subject>Frequency</subject><subject>Gas flow</subject><subject>Monitoring systems</subject><subject>Phase detection</subject><subject>self-monitoring system</subject><subject>Signal processing</subject><subject>Streaming media</subject><subject>Turbulence</subject><subject>Turbulent flow</subject><subject>Ultrasonic imaging</subject><subject>Ultrasonic variables measurement</subject><subject>ultrasound</subject><subject>Velocity measurement</subject><subject>vortex</subject><subject>Vortices</subject><issn>0018-9456</issn><issn>1557-9662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkDFPwzAQRi0EEqUwM7BYLExpz3ZiOyNUtCC1AomW1XIcG1KlcbFTAf8eV0UMTKc7ve909xC6JDAiBMrx8nExogBiVIIkTByhASkKkZWc02M0ACAyK_OCn6KzGNeQQJ6LAXp-sa3LFr5reh-a7g2v2j7omHqDZzriaes_8cL2NuA7HW2NfYdffejtF9ZdjSc-BNvqvknjRL37-hydON1Ge_Fbh2g1vV9OHrL50-xxcjvPDKPQZxVoZ2TOCKso5SwXujbEcAdgaGldwZjmdc2pAVq62tHKuorktE7vgKicYEN0c9i7Df5jZ2OvNk00tm11Z_0uKikKyFleQCKv_5FrvwtdOk5JzoTkUpYJGh8gE3yMwTq1Dc1Gh29FQO39quRX7f2qg9-UuDokGmvtH50zWRJSsB-4H3XS</recordid><startdate>20071201</startdate><enddate>20071201</enddate><creator>Yaoying Lin</creator><creator>Hans, V.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20071201</creationdate><title>Self-Monitoring Ultrasonic Gas Flow Meter Based on Vortex and Correlation Method</title><author>Yaoying Lin ; Hans, V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c320t-b0afc84313b226347adc1c6f00c29ef533a6dd62c029fdf2befb142d96607bf73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Bluff bodies</topic><topic>Correlation</topic><topic>Flow velocity</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Fluid flow measurement</topic><topic>Fluids</topic><topic>Frequency</topic><topic>Gas flow</topic><topic>Monitoring systems</topic><topic>Phase detection</topic><topic>self-monitoring system</topic><topic>Signal processing</topic><topic>Streaming media</topic><topic>Turbulence</topic><topic>Turbulent flow</topic><topic>Ultrasonic imaging</topic><topic>Ultrasonic variables measurement</topic><topic>ultrasound</topic><topic>Velocity measurement</topic><topic>vortex</topic><topic>Vortices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yaoying Lin</creatorcontrib><creatorcontrib>Hans, V.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on instrumentation and measurement</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yaoying Lin</au><au>Hans, V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Self-Monitoring Ultrasonic Gas Flow Meter Based on Vortex and Correlation Method</atitle><jtitle>IEEE transactions on instrumentation and measurement</jtitle><stitle>TIM</stitle><date>2007-12-01</date><risdate>2007</risdate><volume>56</volume><issue>6</issue><spage>2420</spage><epage>2424</epage><pages>2420-2424</pages><issn>0018-9456</issn><eissn>1557-9662</eissn><coden>IEIMAO</coden><abstract>Ultrasound is advantageous for gas flow velocity measurements, owing to its high sensitivity to all kinds of turbulences in the streaming fluid. The cross-correlation method and vortex measurement behind a bluff body have been proven to be good. The most important and difficult problem is ultrasound signal processing. A complex modulated signal has be demodulated by undersampling. The real and imaginary parts of the complex signal can be determined by Hilbert transformation. The demodulated phase or amplitude signal can be applied to cross-correlation functions for the detection of flow velocity. The vortex frequency can be detected by a simple analog signal processing device. The combination of vortex and cross-correlation measurements results in a self-monitoring system. The pattern of a group of vortices is used to determine the transition time of the fluid between two sensor pairs. Measurement results show that the relative error of gas flow velocity with the bluff body is evidently smaller than that without the bluff body.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIM.2007.908137</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9456 |
ispartof | IEEE transactions on instrumentation and measurement, 2007-12, Vol.56 (6), p.2420-2424 |
issn | 0018-9456 1557-9662 |
language | eng |
recordid | cdi_proquest_journals_863786889 |
source | IEEE Electronic Library (IEL) |
subjects | Bluff bodies Correlation Flow velocity Fluid dynamics Fluid flow Fluid flow measurement Fluids Frequency Gas flow Monitoring systems Phase detection self-monitoring system Signal processing Streaming media Turbulence Turbulent flow Ultrasonic imaging Ultrasonic variables measurement ultrasound Velocity measurement vortex Vortices |
title | Self-Monitoring Ultrasonic Gas Flow Meter Based on Vortex and Correlation Method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T23%3A00%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Self-Monitoring%20Ultrasonic%20Gas%20Flow%20Meter%20Based%20on%20Vortex%20and%20Correlation%20Method&rft.jtitle=IEEE%20transactions%20on%20instrumentation%20and%20measurement&rft.au=Yaoying%20Lin&rft.date=2007-12-01&rft.volume=56&rft.issue=6&rft.spage=2420&rft.epage=2424&rft.pages=2420-2424&rft.issn=0018-9456&rft.eissn=1557-9662&rft.coden=IEIMAO&rft_id=info:doi/10.1109/TIM.2007.908137&rft_dat=%3Cproquest_RIE%3E2331911861%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=863786889&rft_id=info:pmid/&rft_ieee_id=4389115&rfr_iscdi=true |