Self-Monitoring Ultrasonic Gas Flow Meter Based on Vortex and Correlation Method

Ultrasound is advantageous for gas flow velocity measurements, owing to its high sensitivity to all kinds of turbulences in the streaming fluid. The cross-correlation method and vortex measurement behind a bluff body have been proven to be good. The most important and difficult problem is ultrasound...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on instrumentation and measurement 2007-12, Vol.56 (6), p.2420-2424
Hauptverfasser: Yaoying Lin, Hans, V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2424
container_issue 6
container_start_page 2420
container_title IEEE transactions on instrumentation and measurement
container_volume 56
creator Yaoying Lin
Hans, V.
description Ultrasound is advantageous for gas flow velocity measurements, owing to its high sensitivity to all kinds of turbulences in the streaming fluid. The cross-correlation method and vortex measurement behind a bluff body have been proven to be good. The most important and difficult problem is ultrasound signal processing. A complex modulated signal has be demodulated by undersampling. The real and imaginary parts of the complex signal can be determined by Hilbert transformation. The demodulated phase or amplitude signal can be applied to cross-correlation functions for the detection of flow velocity. The vortex frequency can be detected by a simple analog signal processing device. The combination of vortex and cross-correlation measurements results in a self-monitoring system. The pattern of a group of vortices is used to determine the transition time of the fluid between two sensor pairs. Measurement results show that the relative error of gas flow velocity with the bluff body is evidently smaller than that without the bluff body.
doi_str_mv 10.1109/TIM.2007.908137
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_863786889</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4389115</ieee_id><sourcerecordid>2331911861</sourcerecordid><originalsourceid>FETCH-LOGICAL-c320t-b0afc84313b226347adc1c6f00c29ef533a6dd62c029fdf2befb142d96607bf73</originalsourceid><addsrcrecordid>eNpdkDFPwzAQRi0EEqUwM7BYLExpz3ZiOyNUtCC1AomW1XIcG1KlcbFTAf8eV0UMTKc7ve909xC6JDAiBMrx8nExogBiVIIkTByhASkKkZWc02M0ACAyK_OCn6KzGNeQQJ6LAXp-sa3LFr5reh-a7g2v2j7omHqDZzriaes_8cL2NuA7HW2NfYdffejtF9ZdjSc-BNvqvknjRL37-hydON1Ge_Fbh2g1vV9OHrL50-xxcjvPDKPQZxVoZ2TOCKso5SwXujbEcAdgaGldwZjmdc2pAVq62tHKuorktE7vgKicYEN0c9i7Df5jZ2OvNk00tm11Z_0uKikKyFleQCKv_5FrvwtdOk5JzoTkUpYJGh8gE3yMwTq1Dc1Gh29FQO39quRX7f2qg9-UuDokGmvtH50zWRJSsB-4H3XS</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>863786889</pqid></control><display><type>article</type><title>Self-Monitoring Ultrasonic Gas Flow Meter Based on Vortex and Correlation Method</title><source>IEEE Electronic Library (IEL)</source><creator>Yaoying Lin ; Hans, V.</creator><creatorcontrib>Yaoying Lin ; Hans, V.</creatorcontrib><description>Ultrasound is advantageous for gas flow velocity measurements, owing to its high sensitivity to all kinds of turbulences in the streaming fluid. The cross-correlation method and vortex measurement behind a bluff body have been proven to be good. The most important and difficult problem is ultrasound signal processing. A complex modulated signal has be demodulated by undersampling. The real and imaginary parts of the complex signal can be determined by Hilbert transformation. The demodulated phase or amplitude signal can be applied to cross-correlation functions for the detection of flow velocity. The vortex frequency can be detected by a simple analog signal processing device. The combination of vortex and cross-correlation measurements results in a self-monitoring system. The pattern of a group of vortices is used to determine the transition time of the fluid between two sensor pairs. Measurement results show that the relative error of gas flow velocity with the bluff body is evidently smaller than that without the bluff body.</description><identifier>ISSN: 0018-9456</identifier><identifier>EISSN: 1557-9662</identifier><identifier>DOI: 10.1109/TIM.2007.908137</identifier><identifier>CODEN: IEIMAO</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Bluff bodies ; Correlation ; Flow velocity ; Fluid dynamics ; Fluid flow ; Fluid flow measurement ; Fluids ; Frequency ; Gas flow ; Monitoring systems ; Phase detection ; self-monitoring system ; Signal processing ; Streaming media ; Turbulence ; Turbulent flow ; Ultrasonic imaging ; Ultrasonic variables measurement ; ultrasound ; Velocity measurement ; vortex ; Vortices</subject><ispartof>IEEE transactions on instrumentation and measurement, 2007-12, Vol.56 (6), p.2420-2424</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2007</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c320t-b0afc84313b226347adc1c6f00c29ef533a6dd62c029fdf2befb142d96607bf73</citedby><cites>FETCH-LOGICAL-c320t-b0afc84313b226347adc1c6f00c29ef533a6dd62c029fdf2befb142d96607bf73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4389115$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4389115$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yaoying Lin</creatorcontrib><creatorcontrib>Hans, V.</creatorcontrib><title>Self-Monitoring Ultrasonic Gas Flow Meter Based on Vortex and Correlation Method</title><title>IEEE transactions on instrumentation and measurement</title><addtitle>TIM</addtitle><description>Ultrasound is advantageous for gas flow velocity measurements, owing to its high sensitivity to all kinds of turbulences in the streaming fluid. The cross-correlation method and vortex measurement behind a bluff body have been proven to be good. The most important and difficult problem is ultrasound signal processing. A complex modulated signal has be demodulated by undersampling. The real and imaginary parts of the complex signal can be determined by Hilbert transformation. The demodulated phase or amplitude signal can be applied to cross-correlation functions for the detection of flow velocity. The vortex frequency can be detected by a simple analog signal processing device. The combination of vortex and cross-correlation measurements results in a self-monitoring system. The pattern of a group of vortices is used to determine the transition time of the fluid between two sensor pairs. Measurement results show that the relative error of gas flow velocity with the bluff body is evidently smaller than that without the bluff body.</description><subject>Bluff bodies</subject><subject>Correlation</subject><subject>Flow velocity</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Fluid flow measurement</subject><subject>Fluids</subject><subject>Frequency</subject><subject>Gas flow</subject><subject>Monitoring systems</subject><subject>Phase detection</subject><subject>self-monitoring system</subject><subject>Signal processing</subject><subject>Streaming media</subject><subject>Turbulence</subject><subject>Turbulent flow</subject><subject>Ultrasonic imaging</subject><subject>Ultrasonic variables measurement</subject><subject>ultrasound</subject><subject>Velocity measurement</subject><subject>vortex</subject><subject>Vortices</subject><issn>0018-9456</issn><issn>1557-9662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkDFPwzAQRi0EEqUwM7BYLExpz3ZiOyNUtCC1AomW1XIcG1KlcbFTAf8eV0UMTKc7ve909xC6JDAiBMrx8nExogBiVIIkTByhASkKkZWc02M0ACAyK_OCn6KzGNeQQJ6LAXp-sa3LFr5reh-a7g2v2j7omHqDZzriaes_8cL2NuA7HW2NfYdffejtF9ZdjSc-BNvqvknjRL37-hydON1Ge_Fbh2g1vV9OHrL50-xxcjvPDKPQZxVoZ2TOCKso5SwXujbEcAdgaGldwZjmdc2pAVq62tHKuorktE7vgKicYEN0c9i7Df5jZ2OvNk00tm11Z_0uKikKyFleQCKv_5FrvwtdOk5JzoTkUpYJGh8gE3yMwTq1Dc1Gh29FQO39quRX7f2qg9-UuDokGmvtH50zWRJSsB-4H3XS</recordid><startdate>20071201</startdate><enddate>20071201</enddate><creator>Yaoying Lin</creator><creator>Hans, V.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20071201</creationdate><title>Self-Monitoring Ultrasonic Gas Flow Meter Based on Vortex and Correlation Method</title><author>Yaoying Lin ; Hans, V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c320t-b0afc84313b226347adc1c6f00c29ef533a6dd62c029fdf2befb142d96607bf73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Bluff bodies</topic><topic>Correlation</topic><topic>Flow velocity</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Fluid flow measurement</topic><topic>Fluids</topic><topic>Frequency</topic><topic>Gas flow</topic><topic>Monitoring systems</topic><topic>Phase detection</topic><topic>self-monitoring system</topic><topic>Signal processing</topic><topic>Streaming media</topic><topic>Turbulence</topic><topic>Turbulent flow</topic><topic>Ultrasonic imaging</topic><topic>Ultrasonic variables measurement</topic><topic>ultrasound</topic><topic>Velocity measurement</topic><topic>vortex</topic><topic>Vortices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yaoying Lin</creatorcontrib><creatorcontrib>Hans, V.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on instrumentation and measurement</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yaoying Lin</au><au>Hans, V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Self-Monitoring Ultrasonic Gas Flow Meter Based on Vortex and Correlation Method</atitle><jtitle>IEEE transactions on instrumentation and measurement</jtitle><stitle>TIM</stitle><date>2007-12-01</date><risdate>2007</risdate><volume>56</volume><issue>6</issue><spage>2420</spage><epage>2424</epage><pages>2420-2424</pages><issn>0018-9456</issn><eissn>1557-9662</eissn><coden>IEIMAO</coden><abstract>Ultrasound is advantageous for gas flow velocity measurements, owing to its high sensitivity to all kinds of turbulences in the streaming fluid. The cross-correlation method and vortex measurement behind a bluff body have been proven to be good. The most important and difficult problem is ultrasound signal processing. A complex modulated signal has be demodulated by undersampling. The real and imaginary parts of the complex signal can be determined by Hilbert transformation. The demodulated phase or amplitude signal can be applied to cross-correlation functions for the detection of flow velocity. The vortex frequency can be detected by a simple analog signal processing device. The combination of vortex and cross-correlation measurements results in a self-monitoring system. The pattern of a group of vortices is used to determine the transition time of the fluid between two sensor pairs. Measurement results show that the relative error of gas flow velocity with the bluff body is evidently smaller than that without the bluff body.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIM.2007.908137</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9456
ispartof IEEE transactions on instrumentation and measurement, 2007-12, Vol.56 (6), p.2420-2424
issn 0018-9456
1557-9662
language eng
recordid cdi_proquest_journals_863786889
source IEEE Electronic Library (IEL)
subjects Bluff bodies
Correlation
Flow velocity
Fluid dynamics
Fluid flow
Fluid flow measurement
Fluids
Frequency
Gas flow
Monitoring systems
Phase detection
self-monitoring system
Signal processing
Streaming media
Turbulence
Turbulent flow
Ultrasonic imaging
Ultrasonic variables measurement
ultrasound
Velocity measurement
vortex
Vortices
title Self-Monitoring Ultrasonic Gas Flow Meter Based on Vortex and Correlation Method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T23%3A00%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Self-Monitoring%20Ultrasonic%20Gas%20Flow%20Meter%20Based%20on%20Vortex%20and%20Correlation%20Method&rft.jtitle=IEEE%20transactions%20on%20instrumentation%20and%20measurement&rft.au=Yaoying%20Lin&rft.date=2007-12-01&rft.volume=56&rft.issue=6&rft.spage=2420&rft.epage=2424&rft.pages=2420-2424&rft.issn=0018-9456&rft.eissn=1557-9662&rft.coden=IEIMAO&rft_id=info:doi/10.1109/TIM.2007.908137&rft_dat=%3Cproquest_RIE%3E2331911861%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=863786889&rft_id=info:pmid/&rft_ieee_id=4389115&rfr_iscdi=true