A Wavelet-Denoising Approach Using Polynomial Threshold Operators

This letter presents a new class of polynomial threshold operators for denoising signals using wavelet transforms. The operators are parameterized to include classical soft-and hard-thresholding operators and have many degrees of freedom to optimally suppress undesired noise and preserve signal deta...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE signal processing letters 2008, Vol.15, p.906-909
Hauptverfasser: Smith, C.B., Agaian, S., Akopian, D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 909
container_issue
container_start_page 906
container_title IEEE signal processing letters
container_volume 15
creator Smith, C.B.
Agaian, S.
Akopian, D.
description This letter presents a new class of polynomial threshold operators for denoising signals using wavelet transforms. The operators are parameterized to include classical soft-and hard-thresholding operators and have many degrees of freedom to optimally suppress undesired noise and preserve signal details. To avoid the complicated process of signal model identification for specific type of signals, a least squares optimization method is proposed for the polynomial coefficients. Our study shows that the proposed term-by-term, fixed-threshold operator can perform as well as adaptively applied, scale-dependent soft and hard thresholding approaches.
doi_str_mv 10.1109/LSP.2008.2001815
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_863574681</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4691049</ieee_id><sourcerecordid>2330792371</sourcerecordid><originalsourceid>FETCH-LOGICAL-c290t-50d8fdd9f3d2519fa5f688a2acc8465e92de76173c47b20308743f00e9f6fc023</originalsourceid><addsrcrecordid>eNo9kFtLwzAUgIMoOKfvgi_F986TpEmTxzKvMNjADR9DTBPX0TU16YT9ezM3fDkX-M6FD6FbDBOMQT7M3hcTAiAOAQvMztAIMyZyQjk-TzWUkEsJ4hJdxbiBRGLBRqiqsg_9Y1s75I-2801suq-s6vvgtVlnq7924dt957eNbrPlOti49m2dzXsb9OBDvEYXTrfR3pzyGK2en5bT13w2f3mbVrPcEAlDzqAWrq6lozVhWDrNHBdCE22MKDizktS25Likpig_CVAQZUEdgJWOOwOEjtH9cW_67Xtn46A2fhe6dFIJTllZcIETBEfIBB9jsE71odnqsFcY1MGTSp7UwZM6eUojd8eRxlr7jxdcYigk_QXHHGMI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>863574681</pqid></control><display><type>article</type><title>A Wavelet-Denoising Approach Using Polynomial Threshold Operators</title><source>IEEE Electronic Library (IEL)</source><creator>Smith, C.B. ; Agaian, S. ; Akopian, D.</creator><creatorcontrib>Smith, C.B. ; Agaian, S. ; Akopian, D.</creatorcontrib><description>This letter presents a new class of polynomial threshold operators for denoising signals using wavelet transforms. The operators are parameterized to include classical soft-and hard-thresholding operators and have many degrees of freedom to optimally suppress undesired noise and preserve signal details. To avoid the complicated process of signal model identification for specific type of signals, a least squares optimization method is proposed for the polynomial coefficients. Our study shows that the proposed term-by-term, fixed-threshold operator can perform as well as adaptively applied, scale-dependent soft and hard thresholding approaches.</description><identifier>ISSN: 1070-9908</identifier><identifier>EISSN: 1558-2361</identifier><identifier>DOI: 10.1109/LSP.2008.2001815</identifier><identifier>CODEN: ISPLEM</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Least squares methods ; Noise reduction ; Optimization methods ; Polynomials ; Signal processing ; Wavelet coefficients ; Wavelet denoising ; Wavelet domain ; wavelet threshold operators ; Wavelet transforms</subject><ispartof>IEEE signal processing letters, 2008, Vol.15, p.906-909</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c290t-50d8fdd9f3d2519fa5f688a2acc8465e92de76173c47b20308743f00e9f6fc023</citedby><cites>FETCH-LOGICAL-c290t-50d8fdd9f3d2519fa5f688a2acc8465e92de76173c47b20308743f00e9f6fc023</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4691049$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,4010,27900,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4691049$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Smith, C.B.</creatorcontrib><creatorcontrib>Agaian, S.</creatorcontrib><creatorcontrib>Akopian, D.</creatorcontrib><title>A Wavelet-Denoising Approach Using Polynomial Threshold Operators</title><title>IEEE signal processing letters</title><addtitle>LSP</addtitle><description>This letter presents a new class of polynomial threshold operators for denoising signals using wavelet transforms. The operators are parameterized to include classical soft-and hard-thresholding operators and have many degrees of freedom to optimally suppress undesired noise and preserve signal details. To avoid the complicated process of signal model identification for specific type of signals, a least squares optimization method is proposed for the polynomial coefficients. Our study shows that the proposed term-by-term, fixed-threshold operator can perform as well as adaptively applied, scale-dependent soft and hard thresholding approaches.</description><subject>Least squares methods</subject><subject>Noise reduction</subject><subject>Optimization methods</subject><subject>Polynomials</subject><subject>Signal processing</subject><subject>Wavelet coefficients</subject><subject>Wavelet denoising</subject><subject>Wavelet domain</subject><subject>wavelet threshold operators</subject><subject>Wavelet transforms</subject><issn>1070-9908</issn><issn>1558-2361</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kFtLwzAUgIMoOKfvgi_F986TpEmTxzKvMNjADR9DTBPX0TU16YT9ezM3fDkX-M6FD6FbDBOMQT7M3hcTAiAOAQvMztAIMyZyQjk-TzWUkEsJ4hJdxbiBRGLBRqiqsg_9Y1s75I-2801suq-s6vvgtVlnq7924dt957eNbrPlOti49m2dzXsb9OBDvEYXTrfR3pzyGK2en5bT13w2f3mbVrPcEAlDzqAWrq6lozVhWDrNHBdCE22MKDizktS25Likpig_CVAQZUEdgJWOOwOEjtH9cW_67Xtn46A2fhe6dFIJTllZcIETBEfIBB9jsE71odnqsFcY1MGTSp7UwZM6eUojd8eRxlr7jxdcYigk_QXHHGMI</recordid><startdate>2008</startdate><enddate>2008</enddate><creator>Smith, C.B.</creator><creator>Agaian, S.</creator><creator>Akopian, D.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>2008</creationdate><title>A Wavelet-Denoising Approach Using Polynomial Threshold Operators</title><author>Smith, C.B. ; Agaian, S. ; Akopian, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c290t-50d8fdd9f3d2519fa5f688a2acc8465e92de76173c47b20308743f00e9f6fc023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Least squares methods</topic><topic>Noise reduction</topic><topic>Optimization methods</topic><topic>Polynomials</topic><topic>Signal processing</topic><topic>Wavelet coefficients</topic><topic>Wavelet denoising</topic><topic>Wavelet domain</topic><topic>wavelet threshold operators</topic><topic>Wavelet transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Smith, C.B.</creatorcontrib><creatorcontrib>Agaian, S.</creatorcontrib><creatorcontrib>Akopian, D.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE signal processing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Smith, C.B.</au><au>Agaian, S.</au><au>Akopian, D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Wavelet-Denoising Approach Using Polynomial Threshold Operators</atitle><jtitle>IEEE signal processing letters</jtitle><stitle>LSP</stitle><date>2008</date><risdate>2008</risdate><volume>15</volume><spage>906</spage><epage>909</epage><pages>906-909</pages><issn>1070-9908</issn><eissn>1558-2361</eissn><coden>ISPLEM</coden><abstract>This letter presents a new class of polynomial threshold operators for denoising signals using wavelet transforms. The operators are parameterized to include classical soft-and hard-thresholding operators and have many degrees of freedom to optimally suppress undesired noise and preserve signal details. To avoid the complicated process of signal model identification for specific type of signals, a least squares optimization method is proposed for the polynomial coefficients. Our study shows that the proposed term-by-term, fixed-threshold operator can perform as well as adaptively applied, scale-dependent soft and hard thresholding approaches.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/LSP.2008.2001815</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1070-9908
ispartof IEEE signal processing letters, 2008, Vol.15, p.906-909
issn 1070-9908
1558-2361
language eng
recordid cdi_proquest_journals_863574681
source IEEE Electronic Library (IEL)
subjects Least squares methods
Noise reduction
Optimization methods
Polynomials
Signal processing
Wavelet coefficients
Wavelet denoising
Wavelet domain
wavelet threshold operators
Wavelet transforms
title A Wavelet-Denoising Approach Using Polynomial Threshold Operators
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T17%3A04%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Wavelet-Denoising%20Approach%20Using%20Polynomial%20Threshold%20Operators&rft.jtitle=IEEE%20signal%20processing%20letters&rft.au=Smith,%20C.B.&rft.date=2008&rft.volume=15&rft.spage=906&rft.epage=909&rft.pages=906-909&rft.issn=1070-9908&rft.eissn=1558-2361&rft.coden=ISPLEM&rft_id=info:doi/10.1109/LSP.2008.2001815&rft_dat=%3Cproquest_RIE%3E2330792371%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=863574681&rft_id=info:pmid/&rft_ieee_id=4691049&rfr_iscdi=true