Second-Order Latent-Space Variational Bayes for Approximate Bayesian Inference

In this letter, we consider a variational approximate Bayesian inference framework, latent-space variational Bayes (LSVB) , in the general context of conjugate-exponential family models with latent variables. In the LSVB approach, we integrate out model parameters in an exact way and then perform th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE signal processing letters 2008, Vol.15, p.918-921
Hauptverfasser: Jaemo Sung, Ghahramani, Z., Sung-Yang Bang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 921
container_issue
container_start_page 918
container_title IEEE signal processing letters
container_volume 15
creator Jaemo Sung
Ghahramani, Z.
Sung-Yang Bang
description In this letter, we consider a variational approximate Bayesian inference framework, latent-space variational Bayes (LSVB) , in the general context of conjugate-exponential family models with latent variables. In the LSVB approach, we integrate out model parameters in an exact way and then perform the variational inference over only the latent variables. It can be shown that LSVB can achieve better estimates of the model evidence as well as the distribution over the latent variables than the popular variational Bayesian expectation-maximization (VBEM). However, the distribution over the latent variables in LSVB has to be approximated in practice. As an approximate implementation of LSVB, we propose a second-order LSVB (SoLSVB) method. In particular, VBEM can be derived as a special case of a first-order approximation in LSVB (Sung). SoLSVB can capture higher order statistics neglected in VBEM and can therefore achieve a better approximation. Examples of Gaussian mixture models are used to illustrate the comparison between our method and VBEM, demonstrating the improvement.
doi_str_mv 10.1109/LSP.2008.2001557
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_863574670</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4691043</ieee_id><sourcerecordid>2330792331</sourcerecordid><originalsourceid>FETCH-LOGICAL-c332t-9119fc55880956175fd39fb78fc1834bc3043f2bf80b8a1fd5cffea3fc7312a23</originalsourceid><addsrcrecordid>eNo9kN9LwzAQx4MoOKfvgi_F98xc07TJ4xz-GBQnVH0NaXqBjtnWpAP335vR4cvdcXzu-PAl5BbYAoCph7J6X6SMyWMBIYozMotN0pTncB5nVjCqFJOX5CqELYskSDEjbxXavmvoxjfok9KM2I20GozF5Mv41oxt35ld8mgOGBLX-2Q5DL7_bb8jOW1b0yXrzqHHzuI1uXBmF_Dm1Ofk8_npY_VKy83LerUsqeU8HakCUM5GPcmUyKEQruHK1YV0FiTPastZxl1aO8lqacA1wjqHhjtbcEhNyufkfvobZX72GEa97fc-mgYtcy6KLC9YhNgEWd-H4NHpwUdxf9DA9DE0HUPTx9D0KbR4cjedtIj4j2e5gijE_wC2uWfh</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>863574670</pqid></control><display><type>article</type><title>Second-Order Latent-Space Variational Bayes for Approximate Bayesian Inference</title><source>IEEE Electronic Library (IEL)</source><creator>Jaemo Sung ; Ghahramani, Z. ; Sung-Yang Bang</creator><creatorcontrib>Jaemo Sung ; Ghahramani, Z. ; Sung-Yang Bang</creatorcontrib><description>In this letter, we consider a variational approximate Bayesian inference framework, latent-space variational Bayes (LSVB) , in the general context of conjugate-exponential family models with latent variables. In the LSVB approach, we integrate out model parameters in an exact way and then perform the variational inference over only the latent variables. It can be shown that LSVB can achieve better estimates of the model evidence as well as the distribution over the latent variables than the popular variational Bayesian expectation-maximization (VBEM). However, the distribution over the latent variables in LSVB has to be approximated in practice. As an approximate implementation of LSVB, we propose a second-order LSVB (SoLSVB) method. In particular, VBEM can be derived as a special case of a first-order approximation in LSVB (Sung). SoLSVB can capture higher order statistics neglected in VBEM and can therefore achieve a better approximation. Examples of Gaussian mixture models are used to illustrate the comparison between our method and VBEM, demonstrating the improvement.</description><identifier>ISSN: 1070-9908</identifier><identifier>EISSN: 1558-2361</identifier><identifier>DOI: 10.1109/LSP.2008.2001557</identifier><identifier>CODEN: ISPLEM</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Bayesian analysis ; Bayesian inference ; Bayesian methods ; Computer science ; conjugate-exponential family ; Context modeling ; Convergence ; Encoding ; Higher order statistics ; latent variable ; mixture of Gaussians ; model selection ; Monte Carlo methods ; Predictive models ; Studies ; variational method</subject><ispartof>IEEE signal processing letters, 2008, Vol.15, p.918-921</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2008</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c332t-9119fc55880956175fd39fb78fc1834bc3043f2bf80b8a1fd5cffea3fc7312a23</citedby><cites>FETCH-LOGICAL-c332t-9119fc55880956175fd39fb78fc1834bc3043f2bf80b8a1fd5cffea3fc7312a23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4691043$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,4024,27923,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4691043$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Jaemo Sung</creatorcontrib><creatorcontrib>Ghahramani, Z.</creatorcontrib><creatorcontrib>Sung-Yang Bang</creatorcontrib><title>Second-Order Latent-Space Variational Bayes for Approximate Bayesian Inference</title><title>IEEE signal processing letters</title><addtitle>LSP</addtitle><description>In this letter, we consider a variational approximate Bayesian inference framework, latent-space variational Bayes (LSVB) , in the general context of conjugate-exponential family models with latent variables. In the LSVB approach, we integrate out model parameters in an exact way and then perform the variational inference over only the latent variables. It can be shown that LSVB can achieve better estimates of the model evidence as well as the distribution over the latent variables than the popular variational Bayesian expectation-maximization (VBEM). However, the distribution over the latent variables in LSVB has to be approximated in practice. As an approximate implementation of LSVB, we propose a second-order LSVB (SoLSVB) method. In particular, VBEM can be derived as a special case of a first-order approximation in LSVB (Sung). SoLSVB can capture higher order statistics neglected in VBEM and can therefore achieve a better approximation. Examples of Gaussian mixture models are used to illustrate the comparison between our method and VBEM, demonstrating the improvement.</description><subject>Bayesian analysis</subject><subject>Bayesian inference</subject><subject>Bayesian methods</subject><subject>Computer science</subject><subject>conjugate-exponential family</subject><subject>Context modeling</subject><subject>Convergence</subject><subject>Encoding</subject><subject>Higher order statistics</subject><subject>latent variable</subject><subject>mixture of Gaussians</subject><subject>model selection</subject><subject>Monte Carlo methods</subject><subject>Predictive models</subject><subject>Studies</subject><subject>variational method</subject><issn>1070-9908</issn><issn>1558-2361</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kN9LwzAQx4MoOKfvgi_F98xc07TJ4xz-GBQnVH0NaXqBjtnWpAP335vR4cvdcXzu-PAl5BbYAoCph7J6X6SMyWMBIYozMotN0pTncB5nVjCqFJOX5CqELYskSDEjbxXavmvoxjfok9KM2I20GozF5Mv41oxt35ld8mgOGBLX-2Q5DL7_bb8jOW1b0yXrzqHHzuI1uXBmF_Dm1Ofk8_npY_VKy83LerUsqeU8HakCUM5GPcmUyKEQruHK1YV0FiTPastZxl1aO8lqacA1wjqHhjtbcEhNyufkfvobZX72GEa97fc-mgYtcy6KLC9YhNgEWd-H4NHpwUdxf9DA9DE0HUPTx9D0KbR4cjedtIj4j2e5gijE_wC2uWfh</recordid><startdate>2008</startdate><enddate>2008</enddate><creator>Jaemo Sung</creator><creator>Ghahramani, Z.</creator><creator>Sung-Yang Bang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>2008</creationdate><title>Second-Order Latent-Space Variational Bayes for Approximate Bayesian Inference</title><author>Jaemo Sung ; Ghahramani, Z. ; Sung-Yang Bang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c332t-9119fc55880956175fd39fb78fc1834bc3043f2bf80b8a1fd5cffea3fc7312a23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Bayesian analysis</topic><topic>Bayesian inference</topic><topic>Bayesian methods</topic><topic>Computer science</topic><topic>conjugate-exponential family</topic><topic>Context modeling</topic><topic>Convergence</topic><topic>Encoding</topic><topic>Higher order statistics</topic><topic>latent variable</topic><topic>mixture of Gaussians</topic><topic>model selection</topic><topic>Monte Carlo methods</topic><topic>Predictive models</topic><topic>Studies</topic><topic>variational method</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jaemo Sung</creatorcontrib><creatorcontrib>Ghahramani, Z.</creatorcontrib><creatorcontrib>Sung-Yang Bang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE signal processing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jaemo Sung</au><au>Ghahramani, Z.</au><au>Sung-Yang Bang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Second-Order Latent-Space Variational Bayes for Approximate Bayesian Inference</atitle><jtitle>IEEE signal processing letters</jtitle><stitle>LSP</stitle><date>2008</date><risdate>2008</risdate><volume>15</volume><spage>918</spage><epage>921</epage><pages>918-921</pages><issn>1070-9908</issn><eissn>1558-2361</eissn><coden>ISPLEM</coden><abstract>In this letter, we consider a variational approximate Bayesian inference framework, latent-space variational Bayes (LSVB) , in the general context of conjugate-exponential family models with latent variables. In the LSVB approach, we integrate out model parameters in an exact way and then perform the variational inference over only the latent variables. It can be shown that LSVB can achieve better estimates of the model evidence as well as the distribution over the latent variables than the popular variational Bayesian expectation-maximization (VBEM). However, the distribution over the latent variables in LSVB has to be approximated in practice. As an approximate implementation of LSVB, we propose a second-order LSVB (SoLSVB) method. In particular, VBEM can be derived as a special case of a first-order approximation in LSVB (Sung). SoLSVB can capture higher order statistics neglected in VBEM and can therefore achieve a better approximation. Examples of Gaussian mixture models are used to illustrate the comparison between our method and VBEM, demonstrating the improvement.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/LSP.2008.2001557</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1070-9908
ispartof IEEE signal processing letters, 2008, Vol.15, p.918-921
issn 1070-9908
1558-2361
language eng
recordid cdi_proquest_journals_863574670
source IEEE Electronic Library (IEL)
subjects Bayesian analysis
Bayesian inference
Bayesian methods
Computer science
conjugate-exponential family
Context modeling
Convergence
Encoding
Higher order statistics
latent variable
mixture of Gaussians
model selection
Monte Carlo methods
Predictive models
Studies
variational method
title Second-Order Latent-Space Variational Bayes for Approximate Bayesian Inference
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T07%3A22%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Second-Order%20Latent-Space%20Variational%20Bayes%20for%20Approximate%20Bayesian%20Inference&rft.jtitle=IEEE%20signal%20processing%20letters&rft.au=Jaemo%20Sung&rft.date=2008&rft.volume=15&rft.spage=918&rft.epage=921&rft.pages=918-921&rft.issn=1070-9908&rft.eissn=1558-2361&rft.coden=ISPLEM&rft_id=info:doi/10.1109/LSP.2008.2001557&rft_dat=%3Cproquest_RIE%3E2330792331%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=863574670&rft_id=info:pmid/&rft_ieee_id=4691043&rfr_iscdi=true