Second-Order Latent-Space Variational Bayes for Approximate Bayesian Inference
In this letter, we consider a variational approximate Bayesian inference framework, latent-space variational Bayes (LSVB) , in the general context of conjugate-exponential family models with latent variables. In the LSVB approach, we integrate out model parameters in an exact way and then perform th...
Gespeichert in:
Veröffentlicht in: | IEEE signal processing letters 2008, Vol.15, p.918-921 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 921 |
---|---|
container_issue | |
container_start_page | 918 |
container_title | IEEE signal processing letters |
container_volume | 15 |
creator | Jaemo Sung Ghahramani, Z. Sung-Yang Bang |
description | In this letter, we consider a variational approximate Bayesian inference framework, latent-space variational Bayes (LSVB) , in the general context of conjugate-exponential family models with latent variables. In the LSVB approach, we integrate out model parameters in an exact way and then perform the variational inference over only the latent variables. It can be shown that LSVB can achieve better estimates of the model evidence as well as the distribution over the latent variables than the popular variational Bayesian expectation-maximization (VBEM). However, the distribution over the latent variables in LSVB has to be approximated in practice. As an approximate implementation of LSVB, we propose a second-order LSVB (SoLSVB) method. In particular, VBEM can be derived as a special case of a first-order approximation in LSVB (Sung). SoLSVB can capture higher order statistics neglected in VBEM and can therefore achieve a better approximation. Examples of Gaussian mixture models are used to illustrate the comparison between our method and VBEM, demonstrating the improvement. |
doi_str_mv | 10.1109/LSP.2008.2001557 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_863574670</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4691043</ieee_id><sourcerecordid>2330792331</sourcerecordid><originalsourceid>FETCH-LOGICAL-c332t-9119fc55880956175fd39fb78fc1834bc3043f2bf80b8a1fd5cffea3fc7312a23</originalsourceid><addsrcrecordid>eNo9kN9LwzAQx4MoOKfvgi_F98xc07TJ4xz-GBQnVH0NaXqBjtnWpAP335vR4cvdcXzu-PAl5BbYAoCph7J6X6SMyWMBIYozMotN0pTncB5nVjCqFJOX5CqELYskSDEjbxXavmvoxjfok9KM2I20GozF5Mv41oxt35ld8mgOGBLX-2Q5DL7_bb8jOW1b0yXrzqHHzuI1uXBmF_Dm1Ofk8_npY_VKy83LerUsqeU8HakCUM5GPcmUyKEQruHK1YV0FiTPastZxl1aO8lqacA1wjqHhjtbcEhNyufkfvobZX72GEa97fc-mgYtcy6KLC9YhNgEWd-H4NHpwUdxf9DA9DE0HUPTx9D0KbR4cjedtIj4j2e5gijE_wC2uWfh</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>863574670</pqid></control><display><type>article</type><title>Second-Order Latent-Space Variational Bayes for Approximate Bayesian Inference</title><source>IEEE Electronic Library (IEL)</source><creator>Jaemo Sung ; Ghahramani, Z. ; Sung-Yang Bang</creator><creatorcontrib>Jaemo Sung ; Ghahramani, Z. ; Sung-Yang Bang</creatorcontrib><description>In this letter, we consider a variational approximate Bayesian inference framework, latent-space variational Bayes (LSVB) , in the general context of conjugate-exponential family models with latent variables. In the LSVB approach, we integrate out model parameters in an exact way and then perform the variational inference over only the latent variables. It can be shown that LSVB can achieve better estimates of the model evidence as well as the distribution over the latent variables than the popular variational Bayesian expectation-maximization (VBEM). However, the distribution over the latent variables in LSVB has to be approximated in practice. As an approximate implementation of LSVB, we propose a second-order LSVB (SoLSVB) method. In particular, VBEM can be derived as a special case of a first-order approximation in LSVB (Sung). SoLSVB can capture higher order statistics neglected in VBEM and can therefore achieve a better approximation. Examples of Gaussian mixture models are used to illustrate the comparison between our method and VBEM, demonstrating the improvement.</description><identifier>ISSN: 1070-9908</identifier><identifier>EISSN: 1558-2361</identifier><identifier>DOI: 10.1109/LSP.2008.2001557</identifier><identifier>CODEN: ISPLEM</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Bayesian analysis ; Bayesian inference ; Bayesian methods ; Computer science ; conjugate-exponential family ; Context modeling ; Convergence ; Encoding ; Higher order statistics ; latent variable ; mixture of Gaussians ; model selection ; Monte Carlo methods ; Predictive models ; Studies ; variational method</subject><ispartof>IEEE signal processing letters, 2008, Vol.15, p.918-921</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2008</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c332t-9119fc55880956175fd39fb78fc1834bc3043f2bf80b8a1fd5cffea3fc7312a23</citedby><cites>FETCH-LOGICAL-c332t-9119fc55880956175fd39fb78fc1834bc3043f2bf80b8a1fd5cffea3fc7312a23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4691043$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,4024,27923,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4691043$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Jaemo Sung</creatorcontrib><creatorcontrib>Ghahramani, Z.</creatorcontrib><creatorcontrib>Sung-Yang Bang</creatorcontrib><title>Second-Order Latent-Space Variational Bayes for Approximate Bayesian Inference</title><title>IEEE signal processing letters</title><addtitle>LSP</addtitle><description>In this letter, we consider a variational approximate Bayesian inference framework, latent-space variational Bayes (LSVB) , in the general context of conjugate-exponential family models with latent variables. In the LSVB approach, we integrate out model parameters in an exact way and then perform the variational inference over only the latent variables. It can be shown that LSVB can achieve better estimates of the model evidence as well as the distribution over the latent variables than the popular variational Bayesian expectation-maximization (VBEM). However, the distribution over the latent variables in LSVB has to be approximated in practice. As an approximate implementation of LSVB, we propose a second-order LSVB (SoLSVB) method. In particular, VBEM can be derived as a special case of a first-order approximation in LSVB (Sung). SoLSVB can capture higher order statistics neglected in VBEM and can therefore achieve a better approximation. Examples of Gaussian mixture models are used to illustrate the comparison between our method and VBEM, demonstrating the improvement.</description><subject>Bayesian analysis</subject><subject>Bayesian inference</subject><subject>Bayesian methods</subject><subject>Computer science</subject><subject>conjugate-exponential family</subject><subject>Context modeling</subject><subject>Convergence</subject><subject>Encoding</subject><subject>Higher order statistics</subject><subject>latent variable</subject><subject>mixture of Gaussians</subject><subject>model selection</subject><subject>Monte Carlo methods</subject><subject>Predictive models</subject><subject>Studies</subject><subject>variational method</subject><issn>1070-9908</issn><issn>1558-2361</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kN9LwzAQx4MoOKfvgi_F98xc07TJ4xz-GBQnVH0NaXqBjtnWpAP335vR4cvdcXzu-PAl5BbYAoCph7J6X6SMyWMBIYozMotN0pTncB5nVjCqFJOX5CqELYskSDEjbxXavmvoxjfok9KM2I20GozF5Mv41oxt35ld8mgOGBLX-2Q5DL7_bb8jOW1b0yXrzqHHzuI1uXBmF_Dm1Ofk8_npY_VKy83LerUsqeU8HakCUM5GPcmUyKEQruHK1YV0FiTPastZxl1aO8lqacA1wjqHhjtbcEhNyufkfvobZX72GEa97fc-mgYtcy6KLC9YhNgEWd-H4NHpwUdxf9DA9DE0HUPTx9D0KbR4cjedtIj4j2e5gijE_wC2uWfh</recordid><startdate>2008</startdate><enddate>2008</enddate><creator>Jaemo Sung</creator><creator>Ghahramani, Z.</creator><creator>Sung-Yang Bang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>2008</creationdate><title>Second-Order Latent-Space Variational Bayes for Approximate Bayesian Inference</title><author>Jaemo Sung ; Ghahramani, Z. ; Sung-Yang Bang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c332t-9119fc55880956175fd39fb78fc1834bc3043f2bf80b8a1fd5cffea3fc7312a23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Bayesian analysis</topic><topic>Bayesian inference</topic><topic>Bayesian methods</topic><topic>Computer science</topic><topic>conjugate-exponential family</topic><topic>Context modeling</topic><topic>Convergence</topic><topic>Encoding</topic><topic>Higher order statistics</topic><topic>latent variable</topic><topic>mixture of Gaussians</topic><topic>model selection</topic><topic>Monte Carlo methods</topic><topic>Predictive models</topic><topic>Studies</topic><topic>variational method</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jaemo Sung</creatorcontrib><creatorcontrib>Ghahramani, Z.</creatorcontrib><creatorcontrib>Sung-Yang Bang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE signal processing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jaemo Sung</au><au>Ghahramani, Z.</au><au>Sung-Yang Bang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Second-Order Latent-Space Variational Bayes for Approximate Bayesian Inference</atitle><jtitle>IEEE signal processing letters</jtitle><stitle>LSP</stitle><date>2008</date><risdate>2008</risdate><volume>15</volume><spage>918</spage><epage>921</epage><pages>918-921</pages><issn>1070-9908</issn><eissn>1558-2361</eissn><coden>ISPLEM</coden><abstract>In this letter, we consider a variational approximate Bayesian inference framework, latent-space variational Bayes (LSVB) , in the general context of conjugate-exponential family models with latent variables. In the LSVB approach, we integrate out model parameters in an exact way and then perform the variational inference over only the latent variables. It can be shown that LSVB can achieve better estimates of the model evidence as well as the distribution over the latent variables than the popular variational Bayesian expectation-maximization (VBEM). However, the distribution over the latent variables in LSVB has to be approximated in practice. As an approximate implementation of LSVB, we propose a second-order LSVB (SoLSVB) method. In particular, VBEM can be derived as a special case of a first-order approximation in LSVB (Sung). SoLSVB can capture higher order statistics neglected in VBEM and can therefore achieve a better approximation. Examples of Gaussian mixture models are used to illustrate the comparison between our method and VBEM, demonstrating the improvement.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/LSP.2008.2001557</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1070-9908 |
ispartof | IEEE signal processing letters, 2008, Vol.15, p.918-921 |
issn | 1070-9908 1558-2361 |
language | eng |
recordid | cdi_proquest_journals_863574670 |
source | IEEE Electronic Library (IEL) |
subjects | Bayesian analysis Bayesian inference Bayesian methods Computer science conjugate-exponential family Context modeling Convergence Encoding Higher order statistics latent variable mixture of Gaussians model selection Monte Carlo methods Predictive models Studies variational method |
title | Second-Order Latent-Space Variational Bayes for Approximate Bayesian Inference |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T07%3A22%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Second-Order%20Latent-Space%20Variational%20Bayes%20for%20Approximate%20Bayesian%20Inference&rft.jtitle=IEEE%20signal%20processing%20letters&rft.au=Jaemo%20Sung&rft.date=2008&rft.volume=15&rft.spage=918&rft.epage=921&rft.pages=918-921&rft.issn=1070-9908&rft.eissn=1558-2361&rft.coden=ISPLEM&rft_id=info:doi/10.1109/LSP.2008.2001557&rft_dat=%3Cproquest_RIE%3E2330792331%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=863574670&rft_id=info:pmid/&rft_ieee_id=4691043&rfr_iscdi=true |