Exponential Stabilization of a Rayleigh Beam Using Collocated Control

We consider a hinged elastic beam described by the Rayleigh beam equation on the interval [0,pi]. We assume the presence of two sensors: one measures the angular velocity of the beam at a point xi epsiv [0,pi] and the other measures the bending (curvature) of the beam at the same point. (If xi = 0 o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on automatic control 2008-04, Vol.53 (3), p.643-654
Hauptverfasser: Weiss, G., Curtain, R.F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 654
container_issue 3
container_start_page 643
container_title IEEE transactions on automatic control
container_volume 53
creator Weiss, G.
Curtain, R.F.
description We consider a hinged elastic beam described by the Rayleigh beam equation on the interval [0,pi]. We assume the presence of two sensors: one measures the angular velocity of the beam at a point xi epsiv [0,pi] and the other measures the bending (curvature) of the beam at the same point. (If xi = 0 or xi = pi, then the second output is not needed.) The corresponding operator semigroup is unitary on a suitable Hilbert state space. These two measurements are advantageous because they make the open-loop system exactly observable, regardless of the point xi. We design the actuators and the feedback law in order to exponentially stabilize this system. Using the theory of collocated static output feedback developed in our recent paper , we design the actuators such that they are collocated, meaning that B = C*, where B is the control operator and C is the observation operator. It turns out that if xi epsiv [0,pi], then the actuators cause a discontinuity of the bending exactly at (this is the price, in this example, of having collocated actuators and sensors). This obliges us to use an extension of to define the output signal in terms of the left and right limit of the bending at xi. We prove that, for all static output feedback gains in a suitable finite range, the closed-loop system is well posed and exponentially stable. This follows from the general theory in our paper, whose main points are recalled here.
doi_str_mv 10.1109/TAC.2008.919849
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_863568876</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4484214</ieee_id><sourcerecordid>34466740</sourcerecordid><originalsourceid>FETCH-LOGICAL-c413t-4e0043c6615f44513e908c726df291e4e013db75a7d23e1b6e31cc9ffee521243</originalsourceid><addsrcrecordid>eNqFkUFrGzEQhUVoIG7acw-9LIW2p3U00kgrHRPjNoVAoE3OQpZnUwV55a7W0OTXV8Yhhxya08zwvjfM8Bj7AHwOwO3ZzfliLjg3cwvWoD1iM1DKtEIJ-YbNOAfTWmH0CXtbyn0dNSLM2HL5d5sHGqboU_Nr8quY4qOfYh6a3De--ekfEsW7380F-U1zW-Jw1yxySjn4ida1HaYxp3fsuPep0Punespuvy1vFpft1fX3H4vzqzYgyKlF4hxl0BpUj6hAkuUmdEKve2GBqgxyveqU79ZCEqw0SQjB9j2REiBQnrKvh73bMf_ZUZncJpZAKfmB8q44y6VGo5R9lTSGa7SAppJf_ktKRK075BX89AK8z7txqP86o6XSxnS6QmcHKIy5lJF6tx3jxo8PDrjb5-RqTm6fkzvkVB2fn9b6EnzqRz-EWJ5tgovOcLW_8-OBi0T0LCMaFIDyH4PZmL0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>863568876</pqid></control><display><type>article</type><title>Exponential Stabilization of a Rayleigh Beam Using Collocated Control</title><source>IEEE Electronic Library (IEL)</source><creator>Weiss, G. ; Curtain, R.F.</creator><creatorcontrib>Weiss, G. ; Curtain, R.F.</creatorcontrib><description>We consider a hinged elastic beam described by the Rayleigh beam equation on the interval [0,pi]. We assume the presence of two sensors: one measures the angular velocity of the beam at a point xi epsiv [0,pi] and the other measures the bending (curvature) of the beam at the same point. (If xi = 0 or xi = pi, then the second output is not needed.) The corresponding operator semigroup is unitary on a suitable Hilbert state space. These two measurements are advantageous because they make the open-loop system exactly observable, regardless of the point xi. We design the actuators and the feedback law in order to exponentially stabilize this system. Using the theory of collocated static output feedback developed in our recent paper , we design the actuators such that they are collocated, meaning that B = C*, where B is the control operator and C is the observation operator. It turns out that if xi epsiv [0,pi], then the actuators cause a discontinuity of the bending exactly at (this is the price, in this example, of having collocated actuators and sensors). This obliges us to use an extension of to define the output signal in terms of the left and right limit of the bending at xi. We prove that, for all static output feedback gains in a suitable finite range, the closed-loop system is well posed and exponentially stable. This follows from the general theory in our paper, whose main points are recalled here.</description><identifier>ISSN: 0018-9286</identifier><identifier>EISSN: 1558-2523</identifier><identifier>DOI: 10.1109/TAC.2008.919849</identifier><identifier>CODEN: IETAA9</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Actuators ; Angular velocity ; Applied sciences ; Beams (radiation) ; Bending ; Collocated sensors and actuators ; Computer science; control theory; systems ; Control system analysis ; Control theory. Systems ; Controllability ; Curvature ; Design engineering ; Equations ; exact controllability and observability ; Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; Hilbert space ; Hydraulic actuators ; Mathematical analysis ; Modelling and identification ; Observability ; Operators ; Output feedback ; Physics ; Rayleigh beam ; Sensor systems ; Sensors ; Solid mechanics ; State-space methods ; Structural and continuum mechanics ; Studies ; Velocity measurement ; Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...) ; well-posed linear system</subject><ispartof>IEEE transactions on automatic control, 2008-04, Vol.53 (3), p.643-654</ispartof><rights>2008 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c413t-4e0043c6615f44513e908c726df291e4e013db75a7d23e1b6e31cc9ffee521243</citedby><cites>FETCH-LOGICAL-c413t-4e0043c6615f44513e908c726df291e4e013db75a7d23e1b6e31cc9ffee521243</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4484214$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4484214$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20278058$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Weiss, G.</creatorcontrib><creatorcontrib>Curtain, R.F.</creatorcontrib><title>Exponential Stabilization of a Rayleigh Beam Using Collocated Control</title><title>IEEE transactions on automatic control</title><addtitle>TAC</addtitle><description>We consider a hinged elastic beam described by the Rayleigh beam equation on the interval [0,pi]. We assume the presence of two sensors: one measures the angular velocity of the beam at a point xi epsiv [0,pi] and the other measures the bending (curvature) of the beam at the same point. (If xi = 0 or xi = pi, then the second output is not needed.) The corresponding operator semigroup is unitary on a suitable Hilbert state space. These two measurements are advantageous because they make the open-loop system exactly observable, regardless of the point xi. We design the actuators and the feedback law in order to exponentially stabilize this system. Using the theory of collocated static output feedback developed in our recent paper , we design the actuators such that they are collocated, meaning that B = C*, where B is the control operator and C is the observation operator. It turns out that if xi epsiv [0,pi], then the actuators cause a discontinuity of the bending exactly at (this is the price, in this example, of having collocated actuators and sensors). This obliges us to use an extension of to define the output signal in terms of the left and right limit of the bending at xi. We prove that, for all static output feedback gains in a suitable finite range, the closed-loop system is well posed and exponentially stable. This follows from the general theory in our paper, whose main points are recalled here.</description><subject>Actuators</subject><subject>Angular velocity</subject><subject>Applied sciences</subject><subject>Beams (radiation)</subject><subject>Bending</subject><subject>Collocated sensors and actuators</subject><subject>Computer science; control theory; systems</subject><subject>Control system analysis</subject><subject>Control theory. Systems</subject><subject>Controllability</subject><subject>Curvature</subject><subject>Design engineering</subject><subject>Equations</subject><subject>exact controllability and observability</subject><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Hilbert space</subject><subject>Hydraulic actuators</subject><subject>Mathematical analysis</subject><subject>Modelling and identification</subject><subject>Observability</subject><subject>Operators</subject><subject>Output feedback</subject><subject>Physics</subject><subject>Rayleigh beam</subject><subject>Sensor systems</subject><subject>Sensors</subject><subject>Solid mechanics</subject><subject>State-space methods</subject><subject>Structural and continuum mechanics</subject><subject>Studies</subject><subject>Velocity measurement</subject><subject>Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</subject><subject>well-posed linear system</subject><issn>0018-9286</issn><issn>1558-2523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqFkUFrGzEQhUVoIG7acw-9LIW2p3U00kgrHRPjNoVAoE3OQpZnUwV55a7W0OTXV8Yhhxya08zwvjfM8Bj7AHwOwO3ZzfliLjg3cwvWoD1iM1DKtEIJ-YbNOAfTWmH0CXtbyn0dNSLM2HL5d5sHGqboU_Nr8quY4qOfYh6a3De--ekfEsW7380F-U1zW-Jw1yxySjn4ida1HaYxp3fsuPep0Punespuvy1vFpft1fX3H4vzqzYgyKlF4hxl0BpUj6hAkuUmdEKve2GBqgxyveqU79ZCEqw0SQjB9j2REiBQnrKvh73bMf_ZUZncJpZAKfmB8q44y6VGo5R9lTSGa7SAppJf_ktKRK075BX89AK8z7txqP86o6XSxnS6QmcHKIy5lJF6tx3jxo8PDrjb5-RqTm6fkzvkVB2fn9b6EnzqRz-EWJ5tgovOcLW_8-OBi0T0LCMaFIDyH4PZmL0</recordid><startdate>20080401</startdate><enddate>20080401</enddate><creator>Weiss, G.</creator><creator>Curtain, R.F.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope></search><sort><creationdate>20080401</creationdate><title>Exponential Stabilization of a Rayleigh Beam Using Collocated Control</title><author>Weiss, G. ; Curtain, R.F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c413t-4e0043c6615f44513e908c726df291e4e013db75a7d23e1b6e31cc9ffee521243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Actuators</topic><topic>Angular velocity</topic><topic>Applied sciences</topic><topic>Beams (radiation)</topic><topic>Bending</topic><topic>Collocated sensors and actuators</topic><topic>Computer science; control theory; systems</topic><topic>Control system analysis</topic><topic>Control theory. Systems</topic><topic>Controllability</topic><topic>Curvature</topic><topic>Design engineering</topic><topic>Equations</topic><topic>exact controllability and observability</topic><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Hilbert space</topic><topic>Hydraulic actuators</topic><topic>Mathematical analysis</topic><topic>Modelling and identification</topic><topic>Observability</topic><topic>Operators</topic><topic>Output feedback</topic><topic>Physics</topic><topic>Rayleigh beam</topic><topic>Sensor systems</topic><topic>Sensors</topic><topic>Solid mechanics</topic><topic>State-space methods</topic><topic>Structural and continuum mechanics</topic><topic>Studies</topic><topic>Velocity measurement</topic><topic>Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</topic><topic>well-posed linear system</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Weiss, G.</creatorcontrib><creatorcontrib>Curtain, R.F.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><jtitle>IEEE transactions on automatic control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Weiss, G.</au><au>Curtain, R.F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exponential Stabilization of a Rayleigh Beam Using Collocated Control</atitle><jtitle>IEEE transactions on automatic control</jtitle><stitle>TAC</stitle><date>2008-04-01</date><risdate>2008</risdate><volume>53</volume><issue>3</issue><spage>643</spage><epage>654</epage><pages>643-654</pages><issn>0018-9286</issn><eissn>1558-2523</eissn><coden>IETAA9</coden><abstract>We consider a hinged elastic beam described by the Rayleigh beam equation on the interval [0,pi]. We assume the presence of two sensors: one measures the angular velocity of the beam at a point xi epsiv [0,pi] and the other measures the bending (curvature) of the beam at the same point. (If xi = 0 or xi = pi, then the second output is not needed.) The corresponding operator semigroup is unitary on a suitable Hilbert state space. These two measurements are advantageous because they make the open-loop system exactly observable, regardless of the point xi. We design the actuators and the feedback law in order to exponentially stabilize this system. Using the theory of collocated static output feedback developed in our recent paper , we design the actuators such that they are collocated, meaning that B = C*, where B is the control operator and C is the observation operator. It turns out that if xi epsiv [0,pi], then the actuators cause a discontinuity of the bending exactly at (this is the price, in this example, of having collocated actuators and sensors). This obliges us to use an extension of to define the output signal in terms of the left and right limit of the bending at xi. We prove that, for all static output feedback gains in a suitable finite range, the closed-loop system is well posed and exponentially stable. This follows from the general theory in our paper, whose main points are recalled here.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TAC.2008.919849</doi><tpages>12</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9286
ispartof IEEE transactions on automatic control, 2008-04, Vol.53 (3), p.643-654
issn 0018-9286
1558-2523
language eng
recordid cdi_proquest_journals_863568876
source IEEE Electronic Library (IEL)
subjects Actuators
Angular velocity
Applied sciences
Beams (radiation)
Bending
Collocated sensors and actuators
Computer science
control theory
systems
Control system analysis
Control theory. Systems
Controllability
Curvature
Design engineering
Equations
exact controllability and observability
Exact sciences and technology
Fundamental areas of phenomenology (including applications)
Hilbert space
Hydraulic actuators
Mathematical analysis
Modelling and identification
Observability
Operators
Output feedback
Physics
Rayleigh beam
Sensor systems
Sensors
Solid mechanics
State-space methods
Structural and continuum mechanics
Studies
Velocity measurement
Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)
well-posed linear system
title Exponential Stabilization of a Rayleigh Beam Using Collocated Control
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T10%3A50%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exponential%20Stabilization%20of%20a%20Rayleigh%20Beam%20Using%20Collocated%20Control&rft.jtitle=IEEE%20transactions%20on%20automatic%20control&rft.au=Weiss,%20G.&rft.date=2008-04-01&rft.volume=53&rft.issue=3&rft.spage=643&rft.epage=654&rft.pages=643-654&rft.issn=0018-9286&rft.eissn=1558-2523&rft.coden=IETAA9&rft_id=info:doi/10.1109/TAC.2008.919849&rft_dat=%3Cproquest_RIE%3E34466740%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=863568876&rft_id=info:pmid/&rft_ieee_id=4484214&rfr_iscdi=true