Exponential Stabilization of a Rayleigh Beam Using Collocated Control
We consider a hinged elastic beam described by the Rayleigh beam equation on the interval [0,pi]. We assume the presence of two sensors: one measures the angular velocity of the beam at a point xi epsiv [0,pi] and the other measures the bending (curvature) of the beam at the same point. (If xi = 0 o...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on automatic control 2008-04, Vol.53 (3), p.643-654 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 654 |
---|---|
container_issue | 3 |
container_start_page | 643 |
container_title | IEEE transactions on automatic control |
container_volume | 53 |
creator | Weiss, G. Curtain, R.F. |
description | We consider a hinged elastic beam described by the Rayleigh beam equation on the interval [0,pi]. We assume the presence of two sensors: one measures the angular velocity of the beam at a point xi epsiv [0,pi] and the other measures the bending (curvature) of the beam at the same point. (If xi = 0 or xi = pi, then the second output is not needed.) The corresponding operator semigroup is unitary on a suitable Hilbert state space. These two measurements are advantageous because they make the open-loop system exactly observable, regardless of the point xi. We design the actuators and the feedback law in order to exponentially stabilize this system. Using the theory of collocated static output feedback developed in our recent paper , we design the actuators such that they are collocated, meaning that B = C*, where B is the control operator and C is the observation operator. It turns out that if xi epsiv [0,pi], then the actuators cause a discontinuity of the bending exactly at (this is the price, in this example, of having collocated actuators and sensors). This obliges us to use an extension of to define the output signal in terms of the left and right limit of the bending at xi. We prove that, for all static output feedback gains in a suitable finite range, the closed-loop system is well posed and exponentially stable. This follows from the general theory in our paper, whose main points are recalled here. |
doi_str_mv | 10.1109/TAC.2008.919849 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_863568876</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4484214</ieee_id><sourcerecordid>34466740</sourcerecordid><originalsourceid>FETCH-LOGICAL-c413t-4e0043c6615f44513e908c726df291e4e013db75a7d23e1b6e31cc9ffee521243</originalsourceid><addsrcrecordid>eNqFkUFrGzEQhUVoIG7acw-9LIW2p3U00kgrHRPjNoVAoE3OQpZnUwV55a7W0OTXV8Yhhxya08zwvjfM8Bj7AHwOwO3ZzfliLjg3cwvWoD1iM1DKtEIJ-YbNOAfTWmH0CXtbyn0dNSLM2HL5d5sHGqboU_Nr8quY4qOfYh6a3De--ekfEsW7380F-U1zW-Jw1yxySjn4ida1HaYxp3fsuPep0Punespuvy1vFpft1fX3H4vzqzYgyKlF4hxl0BpUj6hAkuUmdEKve2GBqgxyveqU79ZCEqw0SQjB9j2REiBQnrKvh73bMf_ZUZncJpZAKfmB8q44y6VGo5R9lTSGa7SAppJf_ktKRK075BX89AK8z7txqP86o6XSxnS6QmcHKIy5lJF6tx3jxo8PDrjb5-RqTm6fkzvkVB2fn9b6EnzqRz-EWJ5tgovOcLW_8-OBi0T0LCMaFIDyH4PZmL0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>863568876</pqid></control><display><type>article</type><title>Exponential Stabilization of a Rayleigh Beam Using Collocated Control</title><source>IEEE Electronic Library (IEL)</source><creator>Weiss, G. ; Curtain, R.F.</creator><creatorcontrib>Weiss, G. ; Curtain, R.F.</creatorcontrib><description>We consider a hinged elastic beam described by the Rayleigh beam equation on the interval [0,pi]. We assume the presence of two sensors: one measures the angular velocity of the beam at a point xi epsiv [0,pi] and the other measures the bending (curvature) of the beam at the same point. (If xi = 0 or xi = pi, then the second output is not needed.) The corresponding operator semigroup is unitary on a suitable Hilbert state space. These two measurements are advantageous because they make the open-loop system exactly observable, regardless of the point xi. We design the actuators and the feedback law in order to exponentially stabilize this system. Using the theory of collocated static output feedback developed in our recent paper , we design the actuators such that they are collocated, meaning that B = C*, where B is the control operator and C is the observation operator. It turns out that if xi epsiv [0,pi], then the actuators cause a discontinuity of the bending exactly at (this is the price, in this example, of having collocated actuators and sensors). This obliges us to use an extension of to define the output signal in terms of the left and right limit of the bending at xi. We prove that, for all static output feedback gains in a suitable finite range, the closed-loop system is well posed and exponentially stable. This follows from the general theory in our paper, whose main points are recalled here.</description><identifier>ISSN: 0018-9286</identifier><identifier>EISSN: 1558-2523</identifier><identifier>DOI: 10.1109/TAC.2008.919849</identifier><identifier>CODEN: IETAA9</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Actuators ; Angular velocity ; Applied sciences ; Beams (radiation) ; Bending ; Collocated sensors and actuators ; Computer science; control theory; systems ; Control system analysis ; Control theory. Systems ; Controllability ; Curvature ; Design engineering ; Equations ; exact controllability and observability ; Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; Hilbert space ; Hydraulic actuators ; Mathematical analysis ; Modelling and identification ; Observability ; Operators ; Output feedback ; Physics ; Rayleigh beam ; Sensor systems ; Sensors ; Solid mechanics ; State-space methods ; Structural and continuum mechanics ; Studies ; Velocity measurement ; Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...) ; well-posed linear system</subject><ispartof>IEEE transactions on automatic control, 2008-04, Vol.53 (3), p.643-654</ispartof><rights>2008 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c413t-4e0043c6615f44513e908c726df291e4e013db75a7d23e1b6e31cc9ffee521243</citedby><cites>FETCH-LOGICAL-c413t-4e0043c6615f44513e908c726df291e4e013db75a7d23e1b6e31cc9ffee521243</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4484214$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4484214$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20278058$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Weiss, G.</creatorcontrib><creatorcontrib>Curtain, R.F.</creatorcontrib><title>Exponential Stabilization of a Rayleigh Beam Using Collocated Control</title><title>IEEE transactions on automatic control</title><addtitle>TAC</addtitle><description>We consider a hinged elastic beam described by the Rayleigh beam equation on the interval [0,pi]. We assume the presence of two sensors: one measures the angular velocity of the beam at a point xi epsiv [0,pi] and the other measures the bending (curvature) of the beam at the same point. (If xi = 0 or xi = pi, then the second output is not needed.) The corresponding operator semigroup is unitary on a suitable Hilbert state space. These two measurements are advantageous because they make the open-loop system exactly observable, regardless of the point xi. We design the actuators and the feedback law in order to exponentially stabilize this system. Using the theory of collocated static output feedback developed in our recent paper , we design the actuators such that they are collocated, meaning that B = C*, where B is the control operator and C is the observation operator. It turns out that if xi epsiv [0,pi], then the actuators cause a discontinuity of the bending exactly at (this is the price, in this example, of having collocated actuators and sensors). This obliges us to use an extension of to define the output signal in terms of the left and right limit of the bending at xi. We prove that, for all static output feedback gains in a suitable finite range, the closed-loop system is well posed and exponentially stable. This follows from the general theory in our paper, whose main points are recalled here.</description><subject>Actuators</subject><subject>Angular velocity</subject><subject>Applied sciences</subject><subject>Beams (radiation)</subject><subject>Bending</subject><subject>Collocated sensors and actuators</subject><subject>Computer science; control theory; systems</subject><subject>Control system analysis</subject><subject>Control theory. Systems</subject><subject>Controllability</subject><subject>Curvature</subject><subject>Design engineering</subject><subject>Equations</subject><subject>exact controllability and observability</subject><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Hilbert space</subject><subject>Hydraulic actuators</subject><subject>Mathematical analysis</subject><subject>Modelling and identification</subject><subject>Observability</subject><subject>Operators</subject><subject>Output feedback</subject><subject>Physics</subject><subject>Rayleigh beam</subject><subject>Sensor systems</subject><subject>Sensors</subject><subject>Solid mechanics</subject><subject>State-space methods</subject><subject>Structural and continuum mechanics</subject><subject>Studies</subject><subject>Velocity measurement</subject><subject>Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</subject><subject>well-posed linear system</subject><issn>0018-9286</issn><issn>1558-2523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqFkUFrGzEQhUVoIG7acw-9LIW2p3U00kgrHRPjNoVAoE3OQpZnUwV55a7W0OTXV8Yhhxya08zwvjfM8Bj7AHwOwO3ZzfliLjg3cwvWoD1iM1DKtEIJ-YbNOAfTWmH0CXtbyn0dNSLM2HL5d5sHGqboU_Nr8quY4qOfYh6a3De--ekfEsW7380F-U1zW-Jw1yxySjn4ida1HaYxp3fsuPep0Punespuvy1vFpft1fX3H4vzqzYgyKlF4hxl0BpUj6hAkuUmdEKve2GBqgxyveqU79ZCEqw0SQjB9j2REiBQnrKvh73bMf_ZUZncJpZAKfmB8q44y6VGo5R9lTSGa7SAppJf_ktKRK075BX89AK8z7txqP86o6XSxnS6QmcHKIy5lJF6tx3jxo8PDrjb5-RqTm6fkzvkVB2fn9b6EnzqRz-EWJ5tgovOcLW_8-OBi0T0LCMaFIDyH4PZmL0</recordid><startdate>20080401</startdate><enddate>20080401</enddate><creator>Weiss, G.</creator><creator>Curtain, R.F.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope></search><sort><creationdate>20080401</creationdate><title>Exponential Stabilization of a Rayleigh Beam Using Collocated Control</title><author>Weiss, G. ; Curtain, R.F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c413t-4e0043c6615f44513e908c726df291e4e013db75a7d23e1b6e31cc9ffee521243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Actuators</topic><topic>Angular velocity</topic><topic>Applied sciences</topic><topic>Beams (radiation)</topic><topic>Bending</topic><topic>Collocated sensors and actuators</topic><topic>Computer science; control theory; systems</topic><topic>Control system analysis</topic><topic>Control theory. Systems</topic><topic>Controllability</topic><topic>Curvature</topic><topic>Design engineering</topic><topic>Equations</topic><topic>exact controllability and observability</topic><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Hilbert space</topic><topic>Hydraulic actuators</topic><topic>Mathematical analysis</topic><topic>Modelling and identification</topic><topic>Observability</topic><topic>Operators</topic><topic>Output feedback</topic><topic>Physics</topic><topic>Rayleigh beam</topic><topic>Sensor systems</topic><topic>Sensors</topic><topic>Solid mechanics</topic><topic>State-space methods</topic><topic>Structural and continuum mechanics</topic><topic>Studies</topic><topic>Velocity measurement</topic><topic>Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</topic><topic>well-posed linear system</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Weiss, G.</creatorcontrib><creatorcontrib>Curtain, R.F.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><jtitle>IEEE transactions on automatic control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Weiss, G.</au><au>Curtain, R.F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exponential Stabilization of a Rayleigh Beam Using Collocated Control</atitle><jtitle>IEEE transactions on automatic control</jtitle><stitle>TAC</stitle><date>2008-04-01</date><risdate>2008</risdate><volume>53</volume><issue>3</issue><spage>643</spage><epage>654</epage><pages>643-654</pages><issn>0018-9286</issn><eissn>1558-2523</eissn><coden>IETAA9</coden><abstract>We consider a hinged elastic beam described by the Rayleigh beam equation on the interval [0,pi]. We assume the presence of two sensors: one measures the angular velocity of the beam at a point xi epsiv [0,pi] and the other measures the bending (curvature) of the beam at the same point. (If xi = 0 or xi = pi, then the second output is not needed.) The corresponding operator semigroup is unitary on a suitable Hilbert state space. These two measurements are advantageous because they make the open-loop system exactly observable, regardless of the point xi. We design the actuators and the feedback law in order to exponentially stabilize this system. Using the theory of collocated static output feedback developed in our recent paper , we design the actuators such that they are collocated, meaning that B = C*, where B is the control operator and C is the observation operator. It turns out that if xi epsiv [0,pi], then the actuators cause a discontinuity of the bending exactly at (this is the price, in this example, of having collocated actuators and sensors). This obliges us to use an extension of to define the output signal in terms of the left and right limit of the bending at xi. We prove that, for all static output feedback gains in a suitable finite range, the closed-loop system is well posed and exponentially stable. This follows from the general theory in our paper, whose main points are recalled here.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TAC.2008.919849</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9286 |
ispartof | IEEE transactions on automatic control, 2008-04, Vol.53 (3), p.643-654 |
issn | 0018-9286 1558-2523 |
language | eng |
recordid | cdi_proquest_journals_863568876 |
source | IEEE Electronic Library (IEL) |
subjects | Actuators Angular velocity Applied sciences Beams (radiation) Bending Collocated sensors and actuators Computer science control theory systems Control system analysis Control theory. Systems Controllability Curvature Design engineering Equations exact controllability and observability Exact sciences and technology Fundamental areas of phenomenology (including applications) Hilbert space Hydraulic actuators Mathematical analysis Modelling and identification Observability Operators Output feedback Physics Rayleigh beam Sensor systems Sensors Solid mechanics State-space methods Structural and continuum mechanics Studies Velocity measurement Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...) well-posed linear system |
title | Exponential Stabilization of a Rayleigh Beam Using Collocated Control |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T10%3A50%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exponential%20Stabilization%20of%20a%20Rayleigh%20Beam%20Using%20Collocated%20Control&rft.jtitle=IEEE%20transactions%20on%20automatic%20control&rft.au=Weiss,%20G.&rft.date=2008-04-01&rft.volume=53&rft.issue=3&rft.spage=643&rft.epage=654&rft.pages=643-654&rft.issn=0018-9286&rft.eissn=1558-2523&rft.coden=IETAA9&rft_id=info:doi/10.1109/TAC.2008.919849&rft_dat=%3Cproquest_RIE%3E34466740%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=863568876&rft_id=info:pmid/&rft_ieee_id=4484214&rfr_iscdi=true |