Unscented Rauch--Tung--Striebel Smoother

This note considers the application of the unscented transform to optimal smoothing of nonlinear state-space models. In this note, a new Rauch-Tung-Striebel type form of the fixed-interval unscented Kalman smoother is derived. The new smoother differs from the previously proposed two-filter-formulat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on automatic control 2008-04, Vol.53 (3), p.845-849
1. Verfasser: Sarkka, S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 849
container_issue 3
container_start_page 845
container_title IEEE transactions on automatic control
container_volume 53
creator Sarkka, S.
description This note considers the application of the unscented transform to optimal smoothing of nonlinear state-space models. In this note, a new Rauch-Tung-Striebel type form of the fixed-interval unscented Kalman smoother is derived. The new smoother differs from the previously proposed two-filter-formulation-based unscented Kalman smoother in the sense that it is not based on running two independent filters forward and backward in time. Instead, a separate backward smoothing pass is used, which recursively computes corrections to the forward filtering result. The smoother equations are derived as approximations to the formal Bayesian optimal smoothing equations. The performance of the new smoother is demonstrated with a simulation.
doi_str_mv 10.1109/TAC.2008.919531
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_863568843</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4484208</ieee_id><sourcerecordid>34441099</sourcerecordid><originalsourceid>FETCH-LOGICAL-c459t-e603617fc028910c71cd3406f965097c4dbb77e3ff1225340f68c235ac9563d83</originalsourceid><addsrcrecordid>eNqFkctLAzEQxoMoWKtnD15E8HFJO3nu5FiKLxAEbc8hTbO6st3VZPfgf2_KigcPehqG-X0fM_MRcsxgwhiY6WI2n3AAnBhmlGA7ZMSUQsoVF7tkBMCQGo56nxyk9JZbLSUbkatlk3xourA-fXK9f6V00TcvlD53sQqrUJ8-b9q2ew3xkOyVrk7h6LuOyfLmejG_ow-Pt_fz2QP1UpmOBg1Cs6L0wNEw8AXzayFBl0YrMIWX69WqKIIoS8a5ypNSo-dCOW-UFmsUY3I5-L7H9qMPqbObKm9Y164JbZ-syf6CccX-JRFBS2Nw63nxJylk_gUYk8GzX-Bb28cm32tRC6URpcjQdIB8bFOKobTvsdq4-GkZ2G0UNkdht1HYIYqsOP-2dcm7uoyu8VX6kXHgBQLyzJ0MXBVC-BlLiZIDii-Hao0c</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>863568843</pqid></control><display><type>article</type><title>Unscented Rauch--Tung--Striebel Smoother</title><source>IEEE Electronic Library (IEL)</source><creator>Sarkka, S.</creator><creatorcontrib>Sarkka, S.</creatorcontrib><description>This note considers the application of the unscented transform to optimal smoothing of nonlinear state-space models. In this note, a new Rauch-Tung-Striebel type form of the fixed-interval unscented Kalman smoother is derived. The new smoother differs from the previously proposed two-filter-formulation-based unscented Kalman smoother in the sense that it is not based on running two independent filters forward and backward in time. Instead, a separate backward smoothing pass is used, which recursively computes corrections to the forward filtering result. The smoother equations are derived as approximations to the formal Bayesian optimal smoothing equations. The performance of the new smoother is demonstrated with a simulation.</description><identifier>ISSN: 0018-9286</identifier><identifier>EISSN: 1558-2523</identifier><identifier>DOI: 10.1109/TAC.2008.919531</identifier><identifier>CODEN: IETAA9</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Approximation ; Bayesian methods ; Computer science; control theory; systems ; Control theory. Systems ; Discrete transforms ; Equations ; Exact sciences and technology ; Filtering ; Filtration ; Kalman filters ; Mathematical analysis ; Mathematical models ; Noise measurement ; Optimization ; Rauch-Tung-Striebel (RTS) smoother ; Running ; Smoothing ; Smoothing methods ; State estimation ; Telecommunication computing ; Time measurement ; unscented Kalman smoother (UKS) ; unscented transform</subject><ispartof>IEEE transactions on automatic control, 2008-04, Vol.53 (3), p.845-849</ispartof><rights>2008 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c459t-e603617fc028910c71cd3406f965097c4dbb77e3ff1225340f68c235ac9563d83</citedby><cites>FETCH-LOGICAL-c459t-e603617fc028910c71cd3406f965097c4dbb77e3ff1225340f68c235ac9563d83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4484208$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4484208$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20278082$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Sarkka, S.</creatorcontrib><title>Unscented Rauch--Tung--Striebel Smoother</title><title>IEEE transactions on automatic control</title><addtitle>TAC</addtitle><description>This note considers the application of the unscented transform to optimal smoothing of nonlinear state-space models. In this note, a new Rauch-Tung-Striebel type form of the fixed-interval unscented Kalman smoother is derived. The new smoother differs from the previously proposed two-filter-formulation-based unscented Kalman smoother in the sense that it is not based on running two independent filters forward and backward in time. Instead, a separate backward smoothing pass is used, which recursively computes corrections to the forward filtering result. The smoother equations are derived as approximations to the formal Bayesian optimal smoothing equations. The performance of the new smoother is demonstrated with a simulation.</description><subject>Applied sciences</subject><subject>Approximation</subject><subject>Bayesian methods</subject><subject>Computer science; control theory; systems</subject><subject>Control theory. Systems</subject><subject>Discrete transforms</subject><subject>Equations</subject><subject>Exact sciences and technology</subject><subject>Filtering</subject><subject>Filtration</subject><subject>Kalman filters</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Noise measurement</subject><subject>Optimization</subject><subject>Rauch-Tung-Striebel (RTS) smoother</subject><subject>Running</subject><subject>Smoothing</subject><subject>Smoothing methods</subject><subject>State estimation</subject><subject>Telecommunication computing</subject><subject>Time measurement</subject><subject>unscented Kalman smoother (UKS)</subject><subject>unscented transform</subject><issn>0018-9286</issn><issn>1558-2523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqFkctLAzEQxoMoWKtnD15E8HFJO3nu5FiKLxAEbc8hTbO6st3VZPfgf2_KigcPehqG-X0fM_MRcsxgwhiY6WI2n3AAnBhmlGA7ZMSUQsoVF7tkBMCQGo56nxyk9JZbLSUbkatlk3xourA-fXK9f6V00TcvlD53sQqrUJ8-b9q2ew3xkOyVrk7h6LuOyfLmejG_ow-Pt_fz2QP1UpmOBg1Cs6L0wNEw8AXzayFBl0YrMIWX69WqKIIoS8a5ypNSo-dCOW-UFmsUY3I5-L7H9qMPqbObKm9Y164JbZ-syf6CccX-JRFBS2Nw63nxJylk_gUYk8GzX-Bb28cm32tRC6URpcjQdIB8bFOKobTvsdq4-GkZ2G0UNkdht1HYIYqsOP-2dcm7uoyu8VX6kXHgBQLyzJ0MXBVC-BlLiZIDii-Hao0c</recordid><startdate>20080401</startdate><enddate>20080401</enddate><creator>Sarkka, S.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope></search><sort><creationdate>20080401</creationdate><title>Unscented Rauch--Tung--Striebel Smoother</title><author>Sarkka, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c459t-e603617fc028910c71cd3406f965097c4dbb77e3ff1225340f68c235ac9563d83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Applied sciences</topic><topic>Approximation</topic><topic>Bayesian methods</topic><topic>Computer science; control theory; systems</topic><topic>Control theory. Systems</topic><topic>Discrete transforms</topic><topic>Equations</topic><topic>Exact sciences and technology</topic><topic>Filtering</topic><topic>Filtration</topic><topic>Kalman filters</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Noise measurement</topic><topic>Optimization</topic><topic>Rauch-Tung-Striebel (RTS) smoother</topic><topic>Running</topic><topic>Smoothing</topic><topic>Smoothing methods</topic><topic>State estimation</topic><topic>Telecommunication computing</topic><topic>Time measurement</topic><topic>unscented Kalman smoother (UKS)</topic><topic>unscented transform</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sarkka, S.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><jtitle>IEEE transactions on automatic control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sarkka, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unscented Rauch--Tung--Striebel Smoother</atitle><jtitle>IEEE transactions on automatic control</jtitle><stitle>TAC</stitle><date>2008-04-01</date><risdate>2008</risdate><volume>53</volume><issue>3</issue><spage>845</spage><epage>849</epage><pages>845-849</pages><issn>0018-9286</issn><eissn>1558-2523</eissn><coden>IETAA9</coden><abstract>This note considers the application of the unscented transform to optimal smoothing of nonlinear state-space models. In this note, a new Rauch-Tung-Striebel type form of the fixed-interval unscented Kalman smoother is derived. The new smoother differs from the previously proposed two-filter-formulation-based unscented Kalman smoother in the sense that it is not based on running two independent filters forward and backward in time. Instead, a separate backward smoothing pass is used, which recursively computes corrections to the forward filtering result. The smoother equations are derived as approximations to the formal Bayesian optimal smoothing equations. The performance of the new smoother is demonstrated with a simulation.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TAC.2008.919531</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9286
ispartof IEEE transactions on automatic control, 2008-04, Vol.53 (3), p.845-849
issn 0018-9286
1558-2523
language eng
recordid cdi_proquest_journals_863568843
source IEEE Electronic Library (IEL)
subjects Applied sciences
Approximation
Bayesian methods
Computer science
control theory
systems
Control theory. Systems
Discrete transforms
Equations
Exact sciences and technology
Filtering
Filtration
Kalman filters
Mathematical analysis
Mathematical models
Noise measurement
Optimization
Rauch-Tung-Striebel (RTS) smoother
Running
Smoothing
Smoothing methods
State estimation
Telecommunication computing
Time measurement
unscented Kalman smoother (UKS)
unscented transform
title Unscented Rauch--Tung--Striebel Smoother
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T23%3A23%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unscented%20Rauch--Tung--Striebel%20Smoother&rft.jtitle=IEEE%20transactions%20on%20automatic%20control&rft.au=Sarkka,%20S.&rft.date=2008-04-01&rft.volume=53&rft.issue=3&rft.spage=845&rft.epage=849&rft.pages=845-849&rft.issn=0018-9286&rft.eissn=1558-2523&rft.coden=IETAA9&rft_id=info:doi/10.1109/TAC.2008.919531&rft_dat=%3Cproquest_RIE%3E34441099%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=863568843&rft_id=info:pmid/&rft_ieee_id=4484208&rfr_iscdi=true