Theoretical and Experimental Identification of Love Wave Frequency Peaks in Layered Structure ZnO/Quartz SAW Device

In this paper, the layered structure ZnO/Quartz (90 deg rotated ST-cut) is investigated theoretically and experimentally. Both waves, Rayleigh and Love, are analyzed. Dispersion curves of phase velocities, electromechanical coupling coefficient ( K 2 ) and temperature coefficient of frequency (TCF)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE sensors journal 2008-08, Vol.8 (8), p.1399-1403
Hauptverfasser: Moreira, F., El Hakiki, M., Elmazria, O., Sarry, F., Le Brizoual, L., Alnot, P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1403
container_issue 8
container_start_page 1399
container_title IEEE sensors journal
container_volume 8
creator Moreira, F.
El Hakiki, M.
Elmazria, O.
Sarry, F.
Le Brizoual, L.
Alnot, P.
description In this paper, the layered structure ZnO/Quartz (90 deg rotated ST-cut) is investigated theoretically and experimentally. Both waves, Rayleigh and Love, are analyzed. Dispersion curves of phase velocities, electromechanical coupling coefficient ( K 2 ) and temperature coefficient of frequency (TCF) were calculated as a function of normalized thickness ZnO film ( kh ZnO = 2pi h ZnO /lambda) and the optimum value of h ZnO was determined for experimental study. Experimental results combined with simulation lead to clearly identify the generated waves and their higher modes in this structure except the mode 0 that shows comparable velocity for both Rayleigh and Love waves. The identification of the wave type was performed by studying the frequency response of the device with or without a droplet of water in the wave path. We also demonstrate that the highest elastic velocity is obtained for the mode 1 of the Love wave. This Love wave mode exhibits very interesting electrical characteristics, good K 2 , high-frequency rejection, low TCF, and very low attenuation in liquid making it very attractive for gas and liquid sensor applications.
doi_str_mv 10.1109/JSEN.2008.920704
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_863512361</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4567521</ieee_id><sourcerecordid>903646924</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-f49400e14ff9b5e0a4a689a48158de0c054520566c68ce1dc8fe83bcb56cf8b83</originalsourceid><addsrcrecordid>eNqFkbtv2zAQxoUiAeo89gJdiA7tJOcoPkSOQWK3Dow8YAcuuhA0dUSUOpJLSkbcv740HGTokCz8CN7vjnf3ZdknCkNKQZ9dzUbXwwJADXUBJfAP2YAKoXJacnWwuzPIOSt_fsyOYnwEoLoU5SCL8wdsA3a1sytim4qMntcY6idsuvQwqZLWPgW7um1I68m03SBZ2HSMA_7psXFbcov2dyR1Q6Z2iwErMutC77o-IPnV3Jzd9TZ0f8nsfEEucVM7PMkOvV1FPH3R4-x-PJpf_MinN98nF-fT3DElutxzzQGQcu_1UiBYbqXSlisqVIXgQHBRgJDSSeWQVk55VGzplkI6r5aKHWff9nXXoU2txs481dHhamUbbPtoNDDJpS74u6QqBcj0nU7k1zdJxrkstZYJ_PIf-Nj2oUnzGiWZoAWTNEGwh1xoYwzozTrt3oatoWB2tpqdrWZnq9nbmlI-71NqRHzFuZClKCj7B54znhE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>863512361</pqid></control><display><type>article</type><title>Theoretical and Experimental Identification of Love Wave Frequency Peaks in Layered Structure ZnO/Quartz SAW Device</title><source>IEEE Electronic Library (IEL)</source><creator>Moreira, F. ; El Hakiki, M. ; Elmazria, O. ; Sarry, F. ; Le Brizoual, L. ; Alnot, P.</creator><creatorcontrib>Moreira, F. ; El Hakiki, M. ; Elmazria, O. ; Sarry, F. ; Le Brizoual, L. ; Alnot, P.</creatorcontrib><description>In this paper, the layered structure ZnO/Quartz (90 deg rotated ST-cut) is investigated theoretically and experimentally. Both waves, Rayleigh and Love, are analyzed. Dispersion curves of phase velocities, electromechanical coupling coefficient ( K 2 ) and temperature coefficient of frequency (TCF) were calculated as a function of normalized thickness ZnO film ( kh ZnO = 2pi h ZnO /lambda) and the optimum value of h ZnO was determined for experimental study. Experimental results combined with simulation lead to clearly identify the generated waves and their higher modes in this structure except the mode 0 that shows comparable velocity for both Rayleigh and Love waves. The identification of the wave type was performed by studying the frequency response of the device with or without a droplet of water in the wave path. We also demonstrate that the highest elastic velocity is obtained for the mode 1 of the Love wave. This Love wave mode exhibits very interesting electrical characteristics, good K 2 , high-frequency rejection, low TCF, and very low attenuation in liquid making it very attractive for gas and liquid sensor applications.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2008.920704</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Acoustic sensors ; Acoustic waves ; Attenuation ; Communication systems ; Devices ; Droplets ; Electromechanical sensors ; Frequency ; Gas detectors ; K^{2} ; Liquids ; Love wave ; Love waves ; mode determination ; Quartz ; Sensors ; Studies ; Surface acoustic wave devices ; Surface acoustic waves ; temperature coefficient of frequency (TCF) ; Temperature sensors ; Zinc oxide ; ZnO/Quartz structure</subject><ispartof>IEEE sensors journal, 2008-08, Vol.8 (8), p.1399-1403</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-f49400e14ff9b5e0a4a689a48158de0c054520566c68ce1dc8fe83bcb56cf8b83</citedby><cites>FETCH-LOGICAL-c385t-f49400e14ff9b5e0a4a689a48158de0c054520566c68ce1dc8fe83bcb56cf8b83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4567521$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4567521$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Moreira, F.</creatorcontrib><creatorcontrib>El Hakiki, M.</creatorcontrib><creatorcontrib>Elmazria, O.</creatorcontrib><creatorcontrib>Sarry, F.</creatorcontrib><creatorcontrib>Le Brizoual, L.</creatorcontrib><creatorcontrib>Alnot, P.</creatorcontrib><title>Theoretical and Experimental Identification of Love Wave Frequency Peaks in Layered Structure ZnO/Quartz SAW Device</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>In this paper, the layered structure ZnO/Quartz (90 deg rotated ST-cut) is investigated theoretically and experimentally. Both waves, Rayleigh and Love, are analyzed. Dispersion curves of phase velocities, electromechanical coupling coefficient ( K 2 ) and temperature coefficient of frequency (TCF) were calculated as a function of normalized thickness ZnO film ( kh ZnO = 2pi h ZnO /lambda) and the optimum value of h ZnO was determined for experimental study. Experimental results combined with simulation lead to clearly identify the generated waves and their higher modes in this structure except the mode 0 that shows comparable velocity for both Rayleigh and Love waves. The identification of the wave type was performed by studying the frequency response of the device with or without a droplet of water in the wave path. We also demonstrate that the highest elastic velocity is obtained for the mode 1 of the Love wave. This Love wave mode exhibits very interesting electrical characteristics, good K 2 , high-frequency rejection, low TCF, and very low attenuation in liquid making it very attractive for gas and liquid sensor applications.</description><subject>Acoustic sensors</subject><subject>Acoustic waves</subject><subject>Attenuation</subject><subject>Communication systems</subject><subject>Devices</subject><subject>Droplets</subject><subject>Electromechanical sensors</subject><subject>Frequency</subject><subject>Gas detectors</subject><subject>K^{2}</subject><subject>Liquids</subject><subject>Love wave</subject><subject>Love waves</subject><subject>mode determination</subject><subject>Quartz</subject><subject>Sensors</subject><subject>Studies</subject><subject>Surface acoustic wave devices</subject><subject>Surface acoustic waves</subject><subject>temperature coefficient of frequency (TCF)</subject><subject>Temperature sensors</subject><subject>Zinc oxide</subject><subject>ZnO/Quartz structure</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqFkbtv2zAQxoUiAeo89gJdiA7tJOcoPkSOQWK3Dow8YAcuuhA0dUSUOpJLSkbcv740HGTokCz8CN7vjnf3ZdknCkNKQZ9dzUbXwwJADXUBJfAP2YAKoXJacnWwuzPIOSt_fsyOYnwEoLoU5SCL8wdsA3a1sytim4qMntcY6idsuvQwqZLWPgW7um1I68m03SBZ2HSMA_7psXFbcov2dyR1Q6Z2iwErMutC77o-IPnV3Jzd9TZ0f8nsfEEucVM7PMkOvV1FPH3R4-x-PJpf_MinN98nF-fT3DElutxzzQGQcu_1UiBYbqXSlisqVIXgQHBRgJDSSeWQVk55VGzplkI6r5aKHWff9nXXoU2txs481dHhamUbbPtoNDDJpS74u6QqBcj0nU7k1zdJxrkstZYJ_PIf-Nj2oUnzGiWZoAWTNEGwh1xoYwzozTrt3oatoWB2tpqdrWZnq9nbmlI-71NqRHzFuZClKCj7B54znhE</recordid><startdate>200808</startdate><enddate>200808</enddate><creator>Moreira, F.</creator><creator>El Hakiki, M.</creator><creator>Elmazria, O.</creator><creator>Sarry, F.</creator><creator>Le Brizoual, L.</creator><creator>Alnot, P.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>200808</creationdate><title>Theoretical and Experimental Identification of Love Wave Frequency Peaks in Layered Structure ZnO/Quartz SAW Device</title><author>Moreira, F. ; El Hakiki, M. ; Elmazria, O. ; Sarry, F. ; Le Brizoual, L. ; Alnot, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-f49400e14ff9b5e0a4a689a48158de0c054520566c68ce1dc8fe83bcb56cf8b83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Acoustic sensors</topic><topic>Acoustic waves</topic><topic>Attenuation</topic><topic>Communication systems</topic><topic>Devices</topic><topic>Droplets</topic><topic>Electromechanical sensors</topic><topic>Frequency</topic><topic>Gas detectors</topic><topic>K^{2}</topic><topic>Liquids</topic><topic>Love wave</topic><topic>Love waves</topic><topic>mode determination</topic><topic>Quartz</topic><topic>Sensors</topic><topic>Studies</topic><topic>Surface acoustic wave devices</topic><topic>Surface acoustic waves</topic><topic>temperature coefficient of frequency (TCF)</topic><topic>Temperature sensors</topic><topic>Zinc oxide</topic><topic>ZnO/Quartz structure</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Moreira, F.</creatorcontrib><creatorcontrib>El Hakiki, M.</creatorcontrib><creatorcontrib>Elmazria, O.</creatorcontrib><creatorcontrib>Sarry, F.</creatorcontrib><creatorcontrib>Le Brizoual, L.</creatorcontrib><creatorcontrib>Alnot, P.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Moreira, F.</au><au>El Hakiki, M.</au><au>Elmazria, O.</au><au>Sarry, F.</au><au>Le Brizoual, L.</au><au>Alnot, P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Theoretical and Experimental Identification of Love Wave Frequency Peaks in Layered Structure ZnO/Quartz SAW Device</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2008-08</date><risdate>2008</risdate><volume>8</volume><issue>8</issue><spage>1399</spage><epage>1403</epage><pages>1399-1403</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>In this paper, the layered structure ZnO/Quartz (90 deg rotated ST-cut) is investigated theoretically and experimentally. Both waves, Rayleigh and Love, are analyzed. Dispersion curves of phase velocities, electromechanical coupling coefficient ( K 2 ) and temperature coefficient of frequency (TCF) were calculated as a function of normalized thickness ZnO film ( kh ZnO = 2pi h ZnO /lambda) and the optimum value of h ZnO was determined for experimental study. Experimental results combined with simulation lead to clearly identify the generated waves and their higher modes in this structure except the mode 0 that shows comparable velocity for both Rayleigh and Love waves. The identification of the wave type was performed by studying the frequency response of the device with or without a droplet of water in the wave path. We also demonstrate that the highest elastic velocity is obtained for the mode 1 of the Love wave. This Love wave mode exhibits very interesting electrical characteristics, good K 2 , high-frequency rejection, low TCF, and very low attenuation in liquid making it very attractive for gas and liquid sensor applications.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2008.920704</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1530-437X
ispartof IEEE sensors journal, 2008-08, Vol.8 (8), p.1399-1403
issn 1530-437X
1558-1748
language eng
recordid cdi_proquest_journals_863512361
source IEEE Electronic Library (IEL)
subjects Acoustic sensors
Acoustic waves
Attenuation
Communication systems
Devices
Droplets
Electromechanical sensors
Frequency
Gas detectors
K^{2}
Liquids
Love wave
Love waves
mode determination
Quartz
Sensors
Studies
Surface acoustic wave devices
Surface acoustic waves
temperature coefficient of frequency (TCF)
Temperature sensors
Zinc oxide
ZnO/Quartz structure
title Theoretical and Experimental Identification of Love Wave Frequency Peaks in Layered Structure ZnO/Quartz SAW Device
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T19%3A25%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Theoretical%20and%20Experimental%20Identification%20of%20Love%20Wave%20Frequency%20Peaks%20in%20Layered%20Structure%20ZnO/Quartz%20SAW%20Device&rft.jtitle=IEEE%20sensors%20journal&rft.au=Moreira,%20F.&rft.date=2008-08&rft.volume=8&rft.issue=8&rft.spage=1399&rft.epage=1403&rft.pages=1399-1403&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2008.920704&rft_dat=%3Cproquest_RIE%3E903646924%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=863512361&rft_id=info:pmid/&rft_ieee_id=4567521&rfr_iscdi=true