Effects of Strength and Microstructure on Hydrogen-Assisted Crack Propagation in 22Cr-13Ni-5Mn Stainless Steel Forgings
The objective of this study was to evaluate the effects of hydrogen on the fracture toughness and fracture mechanisms for the nitrogen-strengthened, austenitic stainless steel 22Cr-13Ni-5Mn, an alloy with potential value in high-pressure hydrogen containment components. The fracture initiation tough...
Gespeichert in:
Veröffentlicht in: | Metallurgical and materials transactions. A, Physical metallurgy and materials science Physical metallurgy and materials science, 2010-12, Vol.41 (13), p.3348-3357 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3357 |
---|---|
container_issue | 13 |
container_start_page | 3348 |
container_title | Metallurgical and materials transactions. A, Physical metallurgy and materials science |
container_volume | 41 |
creator | Nibur, K.A. Somerday, B.P. San Marchi, C. Balch, D.K. |
description | The objective of this study was to evaluate the effects of hydrogen on the fracture toughness and fracture mechanisms for the nitrogen-strengthened, austenitic stainless steel 22Cr-13Ni-5Mn, an alloy with potential value in high-pressure hydrogen containment components. The fracture initiation toughness and crack-growth resistance were measured before and after thermal precharging with hydrogen and as a function of crack-growth orientation and material strength. The effects of crack-growth orientation and material strength dominated over the effect of hydrogen exposure. The former two variables caused changes in fracture initiation toughness of up to 400 pct, while dissolved hydrogen resulted in only modest decreases in fracture initiation toughness of 20 to 40 pct. Coarse
Z-
phase (CrNbN) particles aligned in bands governed the measured fracture toughness and observed fracture mode. Fracture progressed by void nucleation and growth in the
Z-
phase bands, forming microcracks that ultimately linked through the remaining austenite matrix. Crack-growth orientation, material strength, and hydrogen exposure affected the nucleation and growth of voids in the
Z-
phase bands and the subsequent linking of microcracks. Control or elimination of the coarse, banded
Z
phase would likely enhance the fracture resistance of this alloy. |
doi_str_mv | 10.1007/s11661-010-0396-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_863469426</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2329680641</sourcerecordid><originalsourceid>FETCH-LOGICAL-c411t-a72be6f922849fe7bfc8b193b341d4fe7f81624a2f81d3fc5e71f05509c222a83</originalsourceid><addsrcrecordid>eNp1kE1PAyEQhjdGE7X6A7wRE48oAyy7ezSNX4lfiXomlIUVrWxlaEz_vTQ1evI0E3jmYXir6gjYKTDWnCGAUkAZMMpEp-hqq9qDWgoKnWTbpWeNoLXiYrfaR3xjjEEn1F71deG9sxnJ6MlTTi4O-ZWY2JO7YNOIOS1tXiZHxkiuV30aBxfpOWLA7HoyTca-k8c0LsxgcihMiITzaaIg7gOt72JxmhDnDrF0zs3J5ZiGEAc8qHa8maM7_KmT6uXy4nl6TW8frm6m57fUSoBMTcNnTvmO81Z23jUzb9tZ2XwmJPSyHPgWFJeGl9oLb2vXgGd1zTrLOTetmFTHG-8ijZ9Lh1m_jcsUy5O6VUKqTnJVINhA6y9jcl4vUvgwaaWB6XW8ehOvLvHqdbx6VWZOfsQGrZn7ZKIN-DvIi1vImheObzgsV3Fw6W-B_-XfpreKnA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>863469426</pqid></control><display><type>article</type><title>Effects of Strength and Microstructure on Hydrogen-Assisted Crack Propagation in 22Cr-13Ni-5Mn Stainless Steel Forgings</title><source>SpringerLink Journals - AutoHoldings</source><creator>Nibur, K.A. ; Somerday, B.P. ; San Marchi, C. ; Balch, D.K.</creator><creatorcontrib>Nibur, K.A. ; Somerday, B.P. ; San Marchi, C. ; Balch, D.K.</creatorcontrib><description>The objective of this study was to evaluate the effects of hydrogen on the fracture toughness and fracture mechanisms for the nitrogen-strengthened, austenitic stainless steel 22Cr-13Ni-5Mn, an alloy with potential value in high-pressure hydrogen containment components. The fracture initiation toughness and crack-growth resistance were measured before and after thermal precharging with hydrogen and as a function of crack-growth orientation and material strength. The effects of crack-growth orientation and material strength dominated over the effect of hydrogen exposure. The former two variables caused changes in fracture initiation toughness of up to 400 pct, while dissolved hydrogen resulted in only modest decreases in fracture initiation toughness of 20 to 40 pct. Coarse
Z-
phase (CrNbN) particles aligned in bands governed the measured fracture toughness and observed fracture mode. Fracture progressed by void nucleation and growth in the
Z-
phase bands, forming microcracks that ultimately linked through the remaining austenite matrix. Crack-growth orientation, material strength, and hydrogen exposure affected the nucleation and growth of voids in the
Z-
phase bands and the subsequent linking of microcracks. Control or elimination of the coarse, banded
Z
phase would likely enhance the fracture resistance of this alloy.</description><identifier>ISSN: 1073-5623</identifier><identifier>EISSN: 1543-1940</identifier><identifier>DOI: 10.1007/s11661-010-0396-y</identifier><identifier>CODEN: MMTAEB</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Alloys ; Applied sciences ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Crack propagation ; Exact sciences and technology ; Experiments ; Materials Science ; Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology ; Metallic Materials ; Metallurgy ; Metals. Metallurgy ; Nanotechnology ; Propagation ; Stainless steel ; Structural Materials ; Surfaces and Interfaces ; Thin Films</subject><ispartof>Metallurgical and materials transactions. A, Physical metallurgy and materials science, 2010-12, Vol.41 (13), p.3348-3357</ispartof><rights>The Minerals, Metals & Materials Society and ASM International 2010</rights><rights>2015 INIST-CNRS</rights><rights>Copyright Springer Science & Business Media Dec 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c411t-a72be6f922849fe7bfc8b193b341d4fe7f81624a2f81d3fc5e71f05509c222a83</citedby><cites>FETCH-LOGICAL-c411t-a72be6f922849fe7bfc8b193b341d4fe7f81624a2f81d3fc5e71f05509c222a83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11661-010-0396-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11661-010-0396-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23463452$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Nibur, K.A.</creatorcontrib><creatorcontrib>Somerday, B.P.</creatorcontrib><creatorcontrib>San Marchi, C.</creatorcontrib><creatorcontrib>Balch, D.K.</creatorcontrib><title>Effects of Strength and Microstructure on Hydrogen-Assisted Crack Propagation in 22Cr-13Ni-5Mn Stainless Steel Forgings</title><title>Metallurgical and materials transactions. A, Physical metallurgy and materials science</title><addtitle>Metall Mater Trans A</addtitle><description>The objective of this study was to evaluate the effects of hydrogen on the fracture toughness and fracture mechanisms for the nitrogen-strengthened, austenitic stainless steel 22Cr-13Ni-5Mn, an alloy with potential value in high-pressure hydrogen containment components. The fracture initiation toughness and crack-growth resistance were measured before and after thermal precharging with hydrogen and as a function of crack-growth orientation and material strength. The effects of crack-growth orientation and material strength dominated over the effect of hydrogen exposure. The former two variables caused changes in fracture initiation toughness of up to 400 pct, while dissolved hydrogen resulted in only modest decreases in fracture initiation toughness of 20 to 40 pct. Coarse
Z-
phase (CrNbN) particles aligned in bands governed the measured fracture toughness and observed fracture mode. Fracture progressed by void nucleation and growth in the
Z-
phase bands, forming microcracks that ultimately linked through the remaining austenite matrix. Crack-growth orientation, material strength, and hydrogen exposure affected the nucleation and growth of voids in the
Z-
phase bands and the subsequent linking of microcracks. Control or elimination of the coarse, banded
Z
phase would likely enhance the fracture resistance of this alloy.</description><subject>Alloys</subject><subject>Applied sciences</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Crack propagation</subject><subject>Exact sciences and technology</subject><subject>Experiments</subject><subject>Materials Science</subject><subject>Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology</subject><subject>Metallic Materials</subject><subject>Metallurgy</subject><subject>Metals. Metallurgy</subject><subject>Nanotechnology</subject><subject>Propagation</subject><subject>Stainless steel</subject><subject>Structural Materials</subject><subject>Surfaces and Interfaces</subject><subject>Thin Films</subject><issn>1073-5623</issn><issn>1543-1940</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kE1PAyEQhjdGE7X6A7wRE48oAyy7ezSNX4lfiXomlIUVrWxlaEz_vTQ1evI0E3jmYXir6gjYKTDWnCGAUkAZMMpEp-hqq9qDWgoKnWTbpWeNoLXiYrfaR3xjjEEn1F71deG9sxnJ6MlTTi4O-ZWY2JO7YNOIOS1tXiZHxkiuV30aBxfpOWLA7HoyTca-k8c0LsxgcihMiITzaaIg7gOt72JxmhDnDrF0zs3J5ZiGEAc8qHa8maM7_KmT6uXy4nl6TW8frm6m57fUSoBMTcNnTvmO81Z23jUzb9tZ2XwmJPSyHPgWFJeGl9oLb2vXgGd1zTrLOTetmFTHG-8ijZ9Lh1m_jcsUy5O6VUKqTnJVINhA6y9jcl4vUvgwaaWB6XW8ehOvLvHqdbx6VWZOfsQGrZn7ZKIN-DvIi1vImheObzgsV3Fw6W-B_-XfpreKnA</recordid><startdate>20101201</startdate><enddate>20101201</enddate><creator>Nibur, K.A.</creator><creator>Somerday, B.P.</creator><creator>San Marchi, C.</creator><creator>Balch, D.K.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7SR</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20101201</creationdate><title>Effects of Strength and Microstructure on Hydrogen-Assisted Crack Propagation in 22Cr-13Ni-5Mn Stainless Steel Forgings</title><author>Nibur, K.A. ; Somerday, B.P. ; San Marchi, C. ; Balch, D.K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c411t-a72be6f922849fe7bfc8b193b341d4fe7f81624a2f81d3fc5e71f05509c222a83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Alloys</topic><topic>Applied sciences</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Crack propagation</topic><topic>Exact sciences and technology</topic><topic>Experiments</topic><topic>Materials Science</topic><topic>Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology</topic><topic>Metallic Materials</topic><topic>Metallurgy</topic><topic>Metals. Metallurgy</topic><topic>Nanotechnology</topic><topic>Propagation</topic><topic>Stainless steel</topic><topic>Structural Materials</topic><topic>Surfaces and Interfaces</topic><topic>Thin Films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nibur, K.A.</creatorcontrib><creatorcontrib>Somerday, B.P.</creatorcontrib><creatorcontrib>San Marchi, C.</creatorcontrib><creatorcontrib>Balch, D.K.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Engineered Materials Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Metallurgical and materials transactions. A, Physical metallurgy and materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nibur, K.A.</au><au>Somerday, B.P.</au><au>San Marchi, C.</au><au>Balch, D.K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effects of Strength and Microstructure on Hydrogen-Assisted Crack Propagation in 22Cr-13Ni-5Mn Stainless Steel Forgings</atitle><jtitle>Metallurgical and materials transactions. A, Physical metallurgy and materials science</jtitle><stitle>Metall Mater Trans A</stitle><date>2010-12-01</date><risdate>2010</risdate><volume>41</volume><issue>13</issue><spage>3348</spage><epage>3357</epage><pages>3348-3357</pages><issn>1073-5623</issn><eissn>1543-1940</eissn><coden>MMTAEB</coden><abstract>The objective of this study was to evaluate the effects of hydrogen on the fracture toughness and fracture mechanisms for the nitrogen-strengthened, austenitic stainless steel 22Cr-13Ni-5Mn, an alloy with potential value in high-pressure hydrogen containment components. The fracture initiation toughness and crack-growth resistance were measured before and after thermal precharging with hydrogen and as a function of crack-growth orientation and material strength. The effects of crack-growth orientation and material strength dominated over the effect of hydrogen exposure. The former two variables caused changes in fracture initiation toughness of up to 400 pct, while dissolved hydrogen resulted in only modest decreases in fracture initiation toughness of 20 to 40 pct. Coarse
Z-
phase (CrNbN) particles aligned in bands governed the measured fracture toughness and observed fracture mode. Fracture progressed by void nucleation and growth in the
Z-
phase bands, forming microcracks that ultimately linked through the remaining austenite matrix. Crack-growth orientation, material strength, and hydrogen exposure affected the nucleation and growth of voids in the
Z-
phase bands and the subsequent linking of microcracks. Control or elimination of the coarse, banded
Z
phase would likely enhance the fracture resistance of this alloy.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s11661-010-0396-y</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1073-5623 |
ispartof | Metallurgical and materials transactions. A, Physical metallurgy and materials science, 2010-12, Vol.41 (13), p.3348-3357 |
issn | 1073-5623 1543-1940 |
language | eng |
recordid | cdi_proquest_journals_863469426 |
source | SpringerLink Journals - AutoHoldings |
subjects | Alloys Applied sciences Characterization and Evaluation of Materials Chemistry and Materials Science Crack propagation Exact sciences and technology Experiments Materials Science Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology Metallic Materials Metallurgy Metals. Metallurgy Nanotechnology Propagation Stainless steel Structural Materials Surfaces and Interfaces Thin Films |
title | Effects of Strength and Microstructure on Hydrogen-Assisted Crack Propagation in 22Cr-13Ni-5Mn Stainless Steel Forgings |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T03%3A46%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effects%20of%20Strength%20and%20Microstructure%20on%20Hydrogen-Assisted%20Crack%20Propagation%20in%2022Cr-13Ni-5Mn%20Stainless%20Steel%20Forgings&rft.jtitle=Metallurgical%20and%20materials%20transactions.%20A,%20Physical%20metallurgy%20and%20materials%20science&rft.au=Nibur,%20K.A.&rft.date=2010-12-01&rft.volume=41&rft.issue=13&rft.spage=3348&rft.epage=3357&rft.pages=3348-3357&rft.issn=1073-5623&rft.eissn=1543-1940&rft.coden=MMTAEB&rft_id=info:doi/10.1007/s11661-010-0396-y&rft_dat=%3Cproquest_cross%3E2329680641%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=863469426&rft_id=info:pmid/&rfr_iscdi=true |