Distribution Characteristics of In-Grain Misorientation Axes in Cold-Rolled Commercially Pure Titanium and Their Correlation with Active Slip Modes

The distribution characteristics of in-grain misorientation axes (IGMA) in cold-rolled pure titanium were investigated using electron backscatter diffraction (EBSD). Depending on the orientation of individual grains, two distinct IGMA distribution patterns were observed: one with strong intensities...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Metallurgical and materials transactions. A, Physical metallurgy and materials science Physical metallurgy and materials science, 2010-12, Vol.41 (13), p.3473-3487
Hauptverfasser: Chun, Y. B., Battaini, M., Davies, C. H. J., Hwang, S. K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3487
container_issue 13
container_start_page 3473
container_title Metallurgical and materials transactions. A, Physical metallurgy and materials science
container_volume 41
creator Chun, Y. B.
Battaini, M.
Davies, C. H. J.
Hwang, S. K.
description The distribution characteristics of in-grain misorientation axes (IGMA) in cold-rolled pure titanium were investigated using electron backscatter diffraction (EBSD). Depending on the orientation of individual grains, two distinct IGMA distribution patterns were observed: one with strong intensities of IGMA around ⟨0001⟩ and the other with those around ⟨ uvt 0⟩. Analyses based on the Taylor axes and Schmid factors of possible slip modes suggested that the former pattern arises from predominant activation of prism ⟨ a ⟩ slip, while activation of slip under the suppression of prism ⟨ a ⟩ slip results in the latter pattern. It was also found that prism ⟨ a ⟩ slip becomes more active with increasing strain, playing a critical role in the plasticity of pure titanium. The present work demonstrates that IGMA analysis of EBSD data may be used to explore the active slip mode in polycrystalline hexagonal-close-packed (hcp) metals deformed to moderate to large strains.
doi_str_mv 10.1007/s11661-010-0410-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_863468277</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2329680771</sourcerecordid><originalsourceid>FETCH-LOGICAL-c345t-28dd9cb8b95c6a8f521b8cb044a20fda798fda3ad024751e8a9e8ac896ac6bc53</originalsourceid><addsrcrecordid>eNp1kMFO3DAQhqOKSgXaB-jNqsTRrZ04jnNcLZQigVqV5WxNHKdr5LWXsVPgOfrCNQ2CUyXPeDT-5vfor6qPnH3mjHVfEudScso4o0yUJN5Uh7wVDeW9YAelZl1DW1k376qjlG4ZY7xv5GH159SljG6Ys4uBrLeAYLLF0nQmkTiRi0DPEVwgVy5FdDZk-IeuHmwipb2OfqQ_o_d2LPVuZ9E48P6R_JjRko3LENy8IxBGstlahwVCtH4RuXd5S1Ymu9-WXHu3J1dxtOl99XYCn-yH5_u4uvl6tll_o5ffzy_Wq0tqGtFmWqtx7M2ghr41EtTU1nxQZmBCQM2mEbpeldzAyGrRtdwq6EsY1UswcjBtc1x9WnT3GO9mm7K-jTOG8qVWshFS1V1XIL5ABmNKaCe9R7cDfNSc6Sfr9WK9LtbrJ-u1KDMnz8KQDPgJIRiXXgbrol2OLFy9cKk8hV8WXxf4v_hfuE6WNw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>863468277</pqid></control><display><type>article</type><title>Distribution Characteristics of In-Grain Misorientation Axes in Cold-Rolled Commercially Pure Titanium and Their Correlation with Active Slip Modes</title><source>SpringerLink Journals - AutoHoldings</source><creator>Chun, Y. B. ; Battaini, M. ; Davies, C. H. J. ; Hwang, S. K.</creator><creatorcontrib>Chun, Y. B. ; Battaini, M. ; Davies, C. H. J. ; Hwang, S. K.</creatorcontrib><description>The distribution characteristics of in-grain misorientation axes (IGMA) in cold-rolled pure titanium were investigated using electron backscatter diffraction (EBSD). Depending on the orientation of individual grains, two distinct IGMA distribution patterns were observed: one with strong intensities of IGMA around ⟨0001⟩ and the other with those around ⟨ uvt 0⟩. Analyses based on the Taylor axes and Schmid factors of possible slip modes suggested that the former pattern arises from predominant activation of prism ⟨ a ⟩ slip, while activation of slip under the suppression of prism ⟨ a ⟩ slip results in the latter pattern. It was also found that prism ⟨ a ⟩ slip becomes more active with increasing strain, playing a critical role in the plasticity of pure titanium. The present work demonstrates that IGMA analysis of EBSD data may be used to explore the active slip mode in polycrystalline hexagonal-close-packed (hcp) metals deformed to moderate to large strains.</description><identifier>ISSN: 1073-5623</identifier><identifier>EISSN: 1543-1940</identifier><identifier>DOI: 10.1007/s11661-010-0410-4</identifier><identifier>CODEN: MMTAEB</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Applied sciences ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Cold ; Deformation ; Exact sciences and technology ; Forming ; Grain size ; Materials Science ; Metallic Materials ; Metallurgy ; Metals. Metallurgy ; Nanotechnology ; Production techniques ; Rolling ; Structural Materials ; Surfaces and Interfaces ; Thin Films ; Titanium</subject><ispartof>Metallurgical and materials transactions. A, Physical metallurgy and materials science, 2010-12, Vol.41 (13), p.3473-3487</ispartof><rights>The Minerals, Metals &amp; Materials Society and ASM International 2010</rights><rights>2015 INIST-CNRS</rights><rights>Copyright Springer Science &amp; Business Media Dec 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c345t-28dd9cb8b95c6a8f521b8cb044a20fda798fda3ad024751e8a9e8ac896ac6bc53</citedby><cites>FETCH-LOGICAL-c345t-28dd9cb8b95c6a8f521b8cb044a20fda798fda3ad024751e8a9e8ac896ac6bc53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11661-010-0410-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11661-010-0410-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23463466$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Chun, Y. B.</creatorcontrib><creatorcontrib>Battaini, M.</creatorcontrib><creatorcontrib>Davies, C. H. J.</creatorcontrib><creatorcontrib>Hwang, S. K.</creatorcontrib><title>Distribution Characteristics of In-Grain Misorientation Axes in Cold-Rolled Commercially Pure Titanium and Their Correlation with Active Slip Modes</title><title>Metallurgical and materials transactions. A, Physical metallurgy and materials science</title><addtitle>Metall Mater Trans A</addtitle><description>The distribution characteristics of in-grain misorientation axes (IGMA) in cold-rolled pure titanium were investigated using electron backscatter diffraction (EBSD). Depending on the orientation of individual grains, two distinct IGMA distribution patterns were observed: one with strong intensities of IGMA around ⟨0001⟩ and the other with those around ⟨ uvt 0⟩. Analyses based on the Taylor axes and Schmid factors of possible slip modes suggested that the former pattern arises from predominant activation of prism ⟨ a ⟩ slip, while activation of slip under the suppression of prism ⟨ a ⟩ slip results in the latter pattern. It was also found that prism ⟨ a ⟩ slip becomes more active with increasing strain, playing a critical role in the plasticity of pure titanium. The present work demonstrates that IGMA analysis of EBSD data may be used to explore the active slip mode in polycrystalline hexagonal-close-packed (hcp) metals deformed to moderate to large strains.</description><subject>Applied sciences</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Cold</subject><subject>Deformation</subject><subject>Exact sciences and technology</subject><subject>Forming</subject><subject>Grain size</subject><subject>Materials Science</subject><subject>Metallic Materials</subject><subject>Metallurgy</subject><subject>Metals. Metallurgy</subject><subject>Nanotechnology</subject><subject>Production techniques</subject><subject>Rolling</subject><subject>Structural Materials</subject><subject>Surfaces and Interfaces</subject><subject>Thin Films</subject><subject>Titanium</subject><issn>1073-5623</issn><issn>1543-1940</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kMFO3DAQhqOKSgXaB-jNqsTRrZ04jnNcLZQigVqV5WxNHKdr5LWXsVPgOfrCNQ2CUyXPeDT-5vfor6qPnH3mjHVfEudScso4o0yUJN5Uh7wVDeW9YAelZl1DW1k376qjlG4ZY7xv5GH159SljG6Ys4uBrLeAYLLF0nQmkTiRi0DPEVwgVy5FdDZk-IeuHmwipb2OfqQ_o_d2LPVuZ9E48P6R_JjRko3LENy8IxBGstlahwVCtH4RuXd5S1Ymu9-WXHu3J1dxtOl99XYCn-yH5_u4uvl6tll_o5ffzy_Wq0tqGtFmWqtx7M2ghr41EtTU1nxQZmBCQM2mEbpeldzAyGrRtdwq6EsY1UswcjBtc1x9WnT3GO9mm7K-jTOG8qVWshFS1V1XIL5ABmNKaCe9R7cDfNSc6Sfr9WK9LtbrJ-u1KDMnz8KQDPgJIRiXXgbrol2OLFy9cKk8hV8WXxf4v_hfuE6WNw</recordid><startdate>20101201</startdate><enddate>20101201</enddate><creator>Chun, Y. B.</creator><creator>Battaini, M.</creator><creator>Davies, C. H. J.</creator><creator>Hwang, S. K.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7SR</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20101201</creationdate><title>Distribution Characteristics of In-Grain Misorientation Axes in Cold-Rolled Commercially Pure Titanium and Their Correlation with Active Slip Modes</title><author>Chun, Y. B. ; Battaini, M. ; Davies, C. H. J. ; Hwang, S. K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c345t-28dd9cb8b95c6a8f521b8cb044a20fda798fda3ad024751e8a9e8ac896ac6bc53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Applied sciences</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Cold</topic><topic>Deformation</topic><topic>Exact sciences and technology</topic><topic>Forming</topic><topic>Grain size</topic><topic>Materials Science</topic><topic>Metallic Materials</topic><topic>Metallurgy</topic><topic>Metals. Metallurgy</topic><topic>Nanotechnology</topic><topic>Production techniques</topic><topic>Rolling</topic><topic>Structural Materials</topic><topic>Surfaces and Interfaces</topic><topic>Thin Films</topic><topic>Titanium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chun, Y. B.</creatorcontrib><creatorcontrib>Battaini, M.</creatorcontrib><creatorcontrib>Davies, C. H. J.</creatorcontrib><creatorcontrib>Hwang, S. K.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Engineered Materials Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Metallurgical and materials transactions. A, Physical metallurgy and materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chun, Y. B.</au><au>Battaini, M.</au><au>Davies, C. H. J.</au><au>Hwang, S. K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Distribution Characteristics of In-Grain Misorientation Axes in Cold-Rolled Commercially Pure Titanium and Their Correlation with Active Slip Modes</atitle><jtitle>Metallurgical and materials transactions. A, Physical metallurgy and materials science</jtitle><stitle>Metall Mater Trans A</stitle><date>2010-12-01</date><risdate>2010</risdate><volume>41</volume><issue>13</issue><spage>3473</spage><epage>3487</epage><pages>3473-3487</pages><issn>1073-5623</issn><eissn>1543-1940</eissn><coden>MMTAEB</coden><abstract>The distribution characteristics of in-grain misorientation axes (IGMA) in cold-rolled pure titanium were investigated using electron backscatter diffraction (EBSD). Depending on the orientation of individual grains, two distinct IGMA distribution patterns were observed: one with strong intensities of IGMA around ⟨0001⟩ and the other with those around ⟨ uvt 0⟩. Analyses based on the Taylor axes and Schmid factors of possible slip modes suggested that the former pattern arises from predominant activation of prism ⟨ a ⟩ slip, while activation of slip under the suppression of prism ⟨ a ⟩ slip results in the latter pattern. It was also found that prism ⟨ a ⟩ slip becomes more active with increasing strain, playing a critical role in the plasticity of pure titanium. The present work demonstrates that IGMA analysis of EBSD data may be used to explore the active slip mode in polycrystalline hexagonal-close-packed (hcp) metals deformed to moderate to large strains.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s11661-010-0410-4</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1073-5623
ispartof Metallurgical and materials transactions. A, Physical metallurgy and materials science, 2010-12, Vol.41 (13), p.3473-3487
issn 1073-5623
1543-1940
language eng
recordid cdi_proquest_journals_863468277
source SpringerLink Journals - AutoHoldings
subjects Applied sciences
Characterization and Evaluation of Materials
Chemistry and Materials Science
Cold
Deformation
Exact sciences and technology
Forming
Grain size
Materials Science
Metallic Materials
Metallurgy
Metals. Metallurgy
Nanotechnology
Production techniques
Rolling
Structural Materials
Surfaces and Interfaces
Thin Films
Titanium
title Distribution Characteristics of In-Grain Misorientation Axes in Cold-Rolled Commercially Pure Titanium and Their Correlation with Active Slip Modes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T01%3A55%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Distribution%20Characteristics%20of%20In-Grain%20Misorientation%20Axes%20in%20Cold-Rolled%20Commercially%20Pure%20Titanium%20and%20Their%20Correlation%20with%20Active%20Slip%20Modes&rft.jtitle=Metallurgical%20and%20materials%20transactions.%20A,%20Physical%20metallurgy%20and%20materials%20science&rft.au=Chun,%20Y.%20B.&rft.date=2010-12-01&rft.volume=41&rft.issue=13&rft.spage=3473&rft.epage=3487&rft.pages=3473-3487&rft.issn=1073-5623&rft.eissn=1543-1940&rft.coden=MMTAEB&rft_id=info:doi/10.1007/s11661-010-0410-4&rft_dat=%3Cproquest_cross%3E2329680771%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=863468277&rft_id=info:pmid/&rfr_iscdi=true