Distribution Characteristics of In-Grain Misorientation Axes in Cold-Rolled Commercially Pure Titanium and Their Correlation with Active Slip Modes
The distribution characteristics of in-grain misorientation axes (IGMA) in cold-rolled pure titanium were investigated using electron backscatter diffraction (EBSD). Depending on the orientation of individual grains, two distinct IGMA distribution patterns were observed: one with strong intensities...
Gespeichert in:
Veröffentlicht in: | Metallurgical and materials transactions. A, Physical metallurgy and materials science Physical metallurgy and materials science, 2010-12, Vol.41 (13), p.3473-3487 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3487 |
---|---|
container_issue | 13 |
container_start_page | 3473 |
container_title | Metallurgical and materials transactions. A, Physical metallurgy and materials science |
container_volume | 41 |
creator | Chun, Y. B. Battaini, M. Davies, C. H. J. Hwang, S. K. |
description | The distribution characteristics of in-grain misorientation axes (IGMA) in cold-rolled pure titanium were investigated using electron backscatter diffraction (EBSD). Depending on the orientation of individual grains, two distinct IGMA distribution patterns were observed: one with strong intensities of IGMA around ⟨0001⟩ and the other with those around ⟨
uvt
0⟩. Analyses based on the Taylor axes and Schmid factors of possible slip modes suggested that the former pattern arises from predominant activation of prism ⟨
a
⟩ slip, while activation of
slip under the suppression of prism ⟨
a
⟩ slip results in the latter pattern. It was also found that prism ⟨
a
⟩ slip becomes more active with increasing strain, playing a critical role in the plasticity of pure titanium. The present work demonstrates that IGMA analysis of EBSD data may be used to explore the active slip mode in polycrystalline hexagonal-close-packed (hcp) metals deformed to moderate to large strains. |
doi_str_mv | 10.1007/s11661-010-0410-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_863468277</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2329680771</sourcerecordid><originalsourceid>FETCH-LOGICAL-c345t-28dd9cb8b95c6a8f521b8cb044a20fda798fda3ad024751e8a9e8ac896ac6bc53</originalsourceid><addsrcrecordid>eNp1kMFO3DAQhqOKSgXaB-jNqsTRrZ04jnNcLZQigVqV5WxNHKdr5LWXsVPgOfrCNQ2CUyXPeDT-5vfor6qPnH3mjHVfEudScso4o0yUJN5Uh7wVDeW9YAelZl1DW1k376qjlG4ZY7xv5GH159SljG6Ys4uBrLeAYLLF0nQmkTiRi0DPEVwgVy5FdDZk-IeuHmwipb2OfqQ_o_d2LPVuZ9E48P6R_JjRko3LENy8IxBGstlahwVCtH4RuXd5S1Ymu9-WXHu3J1dxtOl99XYCn-yH5_u4uvl6tll_o5ffzy_Wq0tqGtFmWqtx7M2ghr41EtTU1nxQZmBCQM2mEbpeldzAyGrRtdwq6EsY1UswcjBtc1x9WnT3GO9mm7K-jTOG8qVWshFS1V1XIL5ABmNKaCe9R7cDfNSc6Sfr9WK9LtbrJ-u1KDMnz8KQDPgJIRiXXgbrol2OLFy9cKk8hV8WXxf4v_hfuE6WNw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>863468277</pqid></control><display><type>article</type><title>Distribution Characteristics of In-Grain Misorientation Axes in Cold-Rolled Commercially Pure Titanium and Their Correlation with Active Slip Modes</title><source>SpringerLink Journals - AutoHoldings</source><creator>Chun, Y. B. ; Battaini, M. ; Davies, C. H. J. ; Hwang, S. K.</creator><creatorcontrib>Chun, Y. B. ; Battaini, M. ; Davies, C. H. J. ; Hwang, S. K.</creatorcontrib><description>The distribution characteristics of in-grain misorientation axes (IGMA) in cold-rolled pure titanium were investigated using electron backscatter diffraction (EBSD). Depending on the orientation of individual grains, two distinct IGMA distribution patterns were observed: one with strong intensities of IGMA around ⟨0001⟩ and the other with those around ⟨
uvt
0⟩. Analyses based on the Taylor axes and Schmid factors of possible slip modes suggested that the former pattern arises from predominant activation of prism ⟨
a
⟩ slip, while activation of
slip under the suppression of prism ⟨
a
⟩ slip results in the latter pattern. It was also found that prism ⟨
a
⟩ slip becomes more active with increasing strain, playing a critical role in the plasticity of pure titanium. The present work demonstrates that IGMA analysis of EBSD data may be used to explore the active slip mode in polycrystalline hexagonal-close-packed (hcp) metals deformed to moderate to large strains.</description><identifier>ISSN: 1073-5623</identifier><identifier>EISSN: 1543-1940</identifier><identifier>DOI: 10.1007/s11661-010-0410-4</identifier><identifier>CODEN: MMTAEB</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Applied sciences ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Cold ; Deformation ; Exact sciences and technology ; Forming ; Grain size ; Materials Science ; Metallic Materials ; Metallurgy ; Metals. Metallurgy ; Nanotechnology ; Production techniques ; Rolling ; Structural Materials ; Surfaces and Interfaces ; Thin Films ; Titanium</subject><ispartof>Metallurgical and materials transactions. A, Physical metallurgy and materials science, 2010-12, Vol.41 (13), p.3473-3487</ispartof><rights>The Minerals, Metals & Materials Society and ASM International 2010</rights><rights>2015 INIST-CNRS</rights><rights>Copyright Springer Science & Business Media Dec 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c345t-28dd9cb8b95c6a8f521b8cb044a20fda798fda3ad024751e8a9e8ac896ac6bc53</citedby><cites>FETCH-LOGICAL-c345t-28dd9cb8b95c6a8f521b8cb044a20fda798fda3ad024751e8a9e8ac896ac6bc53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11661-010-0410-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11661-010-0410-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23463466$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Chun, Y. B.</creatorcontrib><creatorcontrib>Battaini, M.</creatorcontrib><creatorcontrib>Davies, C. H. J.</creatorcontrib><creatorcontrib>Hwang, S. K.</creatorcontrib><title>Distribution Characteristics of In-Grain Misorientation Axes in Cold-Rolled Commercially Pure Titanium and Their Correlation with Active Slip Modes</title><title>Metallurgical and materials transactions. A, Physical metallurgy and materials science</title><addtitle>Metall Mater Trans A</addtitle><description>The distribution characteristics of in-grain misorientation axes (IGMA) in cold-rolled pure titanium were investigated using electron backscatter diffraction (EBSD). Depending on the orientation of individual grains, two distinct IGMA distribution patterns were observed: one with strong intensities of IGMA around ⟨0001⟩ and the other with those around ⟨
uvt
0⟩. Analyses based on the Taylor axes and Schmid factors of possible slip modes suggested that the former pattern arises from predominant activation of prism ⟨
a
⟩ slip, while activation of
slip under the suppression of prism ⟨
a
⟩ slip results in the latter pattern. It was also found that prism ⟨
a
⟩ slip becomes more active with increasing strain, playing a critical role in the plasticity of pure titanium. The present work demonstrates that IGMA analysis of EBSD data may be used to explore the active slip mode in polycrystalline hexagonal-close-packed (hcp) metals deformed to moderate to large strains.</description><subject>Applied sciences</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Cold</subject><subject>Deformation</subject><subject>Exact sciences and technology</subject><subject>Forming</subject><subject>Grain size</subject><subject>Materials Science</subject><subject>Metallic Materials</subject><subject>Metallurgy</subject><subject>Metals. Metallurgy</subject><subject>Nanotechnology</subject><subject>Production techniques</subject><subject>Rolling</subject><subject>Structural Materials</subject><subject>Surfaces and Interfaces</subject><subject>Thin Films</subject><subject>Titanium</subject><issn>1073-5623</issn><issn>1543-1940</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kMFO3DAQhqOKSgXaB-jNqsTRrZ04jnNcLZQigVqV5WxNHKdr5LWXsVPgOfrCNQ2CUyXPeDT-5vfor6qPnH3mjHVfEudScso4o0yUJN5Uh7wVDeW9YAelZl1DW1k376qjlG4ZY7xv5GH159SljG6Ys4uBrLeAYLLF0nQmkTiRi0DPEVwgVy5FdDZk-IeuHmwipb2OfqQ_o_d2LPVuZ9E48P6R_JjRko3LENy8IxBGstlahwVCtH4RuXd5S1Ymu9-WXHu3J1dxtOl99XYCn-yH5_u4uvl6tll_o5ffzy_Wq0tqGtFmWqtx7M2ghr41EtTU1nxQZmBCQM2mEbpeldzAyGrRtdwq6EsY1UswcjBtc1x9WnT3GO9mm7K-jTOG8qVWshFS1V1XIL5ABmNKaCe9R7cDfNSc6Sfr9WK9LtbrJ-u1KDMnz8KQDPgJIRiXXgbrol2OLFy9cKk8hV8WXxf4v_hfuE6WNw</recordid><startdate>20101201</startdate><enddate>20101201</enddate><creator>Chun, Y. B.</creator><creator>Battaini, M.</creator><creator>Davies, C. H. J.</creator><creator>Hwang, S. K.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7SR</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20101201</creationdate><title>Distribution Characteristics of In-Grain Misorientation Axes in Cold-Rolled Commercially Pure Titanium and Their Correlation with Active Slip Modes</title><author>Chun, Y. B. ; Battaini, M. ; Davies, C. H. J. ; Hwang, S. K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c345t-28dd9cb8b95c6a8f521b8cb044a20fda798fda3ad024751e8a9e8ac896ac6bc53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Applied sciences</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Cold</topic><topic>Deformation</topic><topic>Exact sciences and technology</topic><topic>Forming</topic><topic>Grain size</topic><topic>Materials Science</topic><topic>Metallic Materials</topic><topic>Metallurgy</topic><topic>Metals. Metallurgy</topic><topic>Nanotechnology</topic><topic>Production techniques</topic><topic>Rolling</topic><topic>Structural Materials</topic><topic>Surfaces and Interfaces</topic><topic>Thin Films</topic><topic>Titanium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chun, Y. B.</creatorcontrib><creatorcontrib>Battaini, M.</creatorcontrib><creatorcontrib>Davies, C. H. J.</creatorcontrib><creatorcontrib>Hwang, S. K.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Engineered Materials Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Metallurgical and materials transactions. A, Physical metallurgy and materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chun, Y. B.</au><au>Battaini, M.</au><au>Davies, C. H. J.</au><au>Hwang, S. K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Distribution Characteristics of In-Grain Misorientation Axes in Cold-Rolled Commercially Pure Titanium and Their Correlation with Active Slip Modes</atitle><jtitle>Metallurgical and materials transactions. A, Physical metallurgy and materials science</jtitle><stitle>Metall Mater Trans A</stitle><date>2010-12-01</date><risdate>2010</risdate><volume>41</volume><issue>13</issue><spage>3473</spage><epage>3487</epage><pages>3473-3487</pages><issn>1073-5623</issn><eissn>1543-1940</eissn><coden>MMTAEB</coden><abstract>The distribution characteristics of in-grain misorientation axes (IGMA) in cold-rolled pure titanium were investigated using electron backscatter diffraction (EBSD). Depending on the orientation of individual grains, two distinct IGMA distribution patterns were observed: one with strong intensities of IGMA around ⟨0001⟩ and the other with those around ⟨
uvt
0⟩. Analyses based on the Taylor axes and Schmid factors of possible slip modes suggested that the former pattern arises from predominant activation of prism ⟨
a
⟩ slip, while activation of
slip under the suppression of prism ⟨
a
⟩ slip results in the latter pattern. It was also found that prism ⟨
a
⟩ slip becomes more active with increasing strain, playing a critical role in the plasticity of pure titanium. The present work demonstrates that IGMA analysis of EBSD data may be used to explore the active slip mode in polycrystalline hexagonal-close-packed (hcp) metals deformed to moderate to large strains.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s11661-010-0410-4</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1073-5623 |
ispartof | Metallurgical and materials transactions. A, Physical metallurgy and materials science, 2010-12, Vol.41 (13), p.3473-3487 |
issn | 1073-5623 1543-1940 |
language | eng |
recordid | cdi_proquest_journals_863468277 |
source | SpringerLink Journals - AutoHoldings |
subjects | Applied sciences Characterization and Evaluation of Materials Chemistry and Materials Science Cold Deformation Exact sciences and technology Forming Grain size Materials Science Metallic Materials Metallurgy Metals. Metallurgy Nanotechnology Production techniques Rolling Structural Materials Surfaces and Interfaces Thin Films Titanium |
title | Distribution Characteristics of In-Grain Misorientation Axes in Cold-Rolled Commercially Pure Titanium and Their Correlation with Active Slip Modes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T01%3A55%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Distribution%20Characteristics%20of%20In-Grain%20Misorientation%20Axes%20in%20Cold-Rolled%20Commercially%20Pure%20Titanium%20and%20Their%20Correlation%20with%20Active%20Slip%20Modes&rft.jtitle=Metallurgical%20and%20materials%20transactions.%20A,%20Physical%20metallurgy%20and%20materials%20science&rft.au=Chun,%20Y.%20B.&rft.date=2010-12-01&rft.volume=41&rft.issue=13&rft.spage=3473&rft.epage=3487&rft.pages=3473-3487&rft.issn=1073-5623&rft.eissn=1543-1940&rft.coden=MMTAEB&rft_id=info:doi/10.1007/s11661-010-0410-4&rft_dat=%3Cproquest_cross%3E2329680771%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=863468277&rft_id=info:pmid/&rfr_iscdi=true |