Effect of Load Models on Probabilistic Characterization of Aggregated Load Patterns

This paper presents a comprehensive approach to probabilistic characterization of aggregated load pattern of low-voltage consumers. Different from previous methods, consumer load patterns obtained from load survey are converted to empirical cumulative density functions. The functions are then used t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on power systems 2011-05, Vol.26 (2), p.811-819
Hauptverfasser: Mousavi, S M, Abyaneh, H A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 819
container_issue 2
container_start_page 811
container_title IEEE transactions on power systems
container_volume 26
creator Mousavi, S M
Abyaneh, H A
description This paper presents a comprehensive approach to probabilistic characterization of aggregated load pattern of low-voltage consumers. Different from previous methods, consumer load patterns obtained from load survey are converted to empirical cumulative density functions. The functions are then used to address stochastic nature of load pattern in any given point of distribution network. The proposed approach is adopted to investigate the effect of load models on the characterization of aggregated load patterns. In addition, a goodness-of-fit analysis has been carried out to show that the load models can significantly affect the accuracy of aggregated load modeling. It is demonstrated that the constant power (real and reactive) load model which is normally adopted in most distribution network management studies may lead to misleading results compared to the actual network. Case studies are presented and discussed with reference to a real distribution network. The results verify that the proposed method is accurate and flexible, and the voltage-dependent load model is the most promising solution for the aggregated load modeling.
doi_str_mv 10.1109/TPWRS.2010.2062542
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_863357230</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5559495</ieee_id><sourcerecordid>2329185691</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-27ea5df83e9360d558bc931cf9704b124b109d242d87b01445f28cfa450221b33</originalsourceid><addsrcrecordid>eNpdkE1LAzEQhoMoWKt_QC-LJy9bJ1-7m2MpfkHFYiseQzab1C3bTU3Sg_56U1s8eBiGYZ5nGF6ELjGMMAZxu5i9v85HBNJMoCCckSM0wJxXORSlOEYDqCqeV4LDKToLYQUARVoM0PzOWqNj5mw2darJnl1jupC5Ppt5V6u67doQW51NPpRXOhrffqvYpnUSxsulN0sVTbN3ZyomoA_n6MSqLpiLQx-it_u7xeQxn748PE3G01xTUsaclEbxxlbUCFpAk56ttaBYW1ECqzFJBaIhjDRVWQNmjFtSaasYB0JwTekQ3ezvbrz73JoQ5boN2nSd6o3bBomLElPMMeMJvf6HrtzW9-k7WRWU8pJQSBDZQ9q7ELyxcuPbtfJfEoPcxSx_Y5a7mOUh5iRd7aXWGPMncM4FE5z-AMpad7I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>863357230</pqid></control><display><type>article</type><title>Effect of Load Models on Probabilistic Characterization of Aggregated Load Patterns</title><source>IEEE Electronic Library (IEL)</source><creator>Mousavi, S M ; Abyaneh, H A</creator><creatorcontrib>Mousavi, S M ; Abyaneh, H A</creatorcontrib><description>This paper presents a comprehensive approach to probabilistic characterization of aggregated load pattern of low-voltage consumers. Different from previous methods, consumer load patterns obtained from load survey are converted to empirical cumulative density functions. The functions are then used to address stochastic nature of load pattern in any given point of distribution network. The proposed approach is adopted to investigate the effect of load models on the characterization of aggregated load patterns. In addition, a goodness-of-fit analysis has been carried out to show that the load models can significantly affect the accuracy of aggregated load modeling. It is demonstrated that the constant power (real and reactive) load model which is normally adopted in most distribution network management studies may lead to misleading results compared to the actual network. Case studies are presented and discussed with reference to a real distribution network. The results verify that the proposed method is accurate and flexible, and the voltage-dependent load model is the most promising solution for the aggregated load modeling.</description><identifier>ISSN: 0885-8950</identifier><identifier>EISSN: 1558-0679</identifier><identifier>DOI: 10.1109/TPWRS.2010.2062542</identifier><identifier>CODEN: ITPSEG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Accuracy ; Conferences ; Consumers ; Data models ; Density ; Load modeling ; Mathematical models ; Networks ; Power demand ; power distribution ; Probabilistic logic ; Probabilistic methods ; Probability theory ; Reactive power ; Stress concentration ; Studies ; Voltage measurement</subject><ispartof>IEEE transactions on power systems, 2011-05, Vol.26 (2), p.811-819</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) May 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-27ea5df83e9360d558bc931cf9704b124b109d242d87b01445f28cfa450221b33</citedby><cites>FETCH-LOGICAL-c327t-27ea5df83e9360d558bc931cf9704b124b109d242d87b01445f28cfa450221b33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5559495$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5559495$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Mousavi, S M</creatorcontrib><creatorcontrib>Abyaneh, H A</creatorcontrib><title>Effect of Load Models on Probabilistic Characterization of Aggregated Load Patterns</title><title>IEEE transactions on power systems</title><addtitle>TPWRS</addtitle><description>This paper presents a comprehensive approach to probabilistic characterization of aggregated load pattern of low-voltage consumers. Different from previous methods, consumer load patterns obtained from load survey are converted to empirical cumulative density functions. The functions are then used to address stochastic nature of load pattern in any given point of distribution network. The proposed approach is adopted to investigate the effect of load models on the characterization of aggregated load patterns. In addition, a goodness-of-fit analysis has been carried out to show that the load models can significantly affect the accuracy of aggregated load modeling. It is demonstrated that the constant power (real and reactive) load model which is normally adopted in most distribution network management studies may lead to misleading results compared to the actual network. Case studies are presented and discussed with reference to a real distribution network. The results verify that the proposed method is accurate and flexible, and the voltage-dependent load model is the most promising solution for the aggregated load modeling.</description><subject>Accuracy</subject><subject>Conferences</subject><subject>Consumers</subject><subject>Data models</subject><subject>Density</subject><subject>Load modeling</subject><subject>Mathematical models</subject><subject>Networks</subject><subject>Power demand</subject><subject>power distribution</subject><subject>Probabilistic logic</subject><subject>Probabilistic methods</subject><subject>Probability theory</subject><subject>Reactive power</subject><subject>Stress concentration</subject><subject>Studies</subject><subject>Voltage measurement</subject><issn>0885-8950</issn><issn>1558-0679</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE1LAzEQhoMoWKt_QC-LJy9bJ1-7m2MpfkHFYiseQzab1C3bTU3Sg_56U1s8eBiGYZ5nGF6ELjGMMAZxu5i9v85HBNJMoCCckSM0wJxXORSlOEYDqCqeV4LDKToLYQUARVoM0PzOWqNj5mw2darJnl1jupC5Ppt5V6u67doQW51NPpRXOhrffqvYpnUSxsulN0sVTbN3ZyomoA_n6MSqLpiLQx-it_u7xeQxn748PE3G01xTUsaclEbxxlbUCFpAk56ttaBYW1ECqzFJBaIhjDRVWQNmjFtSaasYB0JwTekQ3ezvbrz73JoQ5boN2nSd6o3bBomLElPMMeMJvf6HrtzW9-k7WRWU8pJQSBDZQ9q7ELyxcuPbtfJfEoPcxSx_Y5a7mOUh5iRd7aXWGPMncM4FE5z-AMpad7I</recordid><startdate>201105</startdate><enddate>201105</enddate><creator>Mousavi, S M</creator><creator>Abyaneh, H A</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>F28</scope></search><sort><creationdate>201105</creationdate><title>Effect of Load Models on Probabilistic Characterization of Aggregated Load Patterns</title><author>Mousavi, S M ; Abyaneh, H A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-27ea5df83e9360d558bc931cf9704b124b109d242d87b01445f28cfa450221b33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Accuracy</topic><topic>Conferences</topic><topic>Consumers</topic><topic>Data models</topic><topic>Density</topic><topic>Load modeling</topic><topic>Mathematical models</topic><topic>Networks</topic><topic>Power demand</topic><topic>power distribution</topic><topic>Probabilistic logic</topic><topic>Probabilistic methods</topic><topic>Probability theory</topic><topic>Reactive power</topic><topic>Stress concentration</topic><topic>Studies</topic><topic>Voltage measurement</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mousavi, S M</creatorcontrib><creatorcontrib>Abyaneh, H A</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><jtitle>IEEE transactions on power systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Mousavi, S M</au><au>Abyaneh, H A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of Load Models on Probabilistic Characterization of Aggregated Load Patterns</atitle><jtitle>IEEE transactions on power systems</jtitle><stitle>TPWRS</stitle><date>2011-05</date><risdate>2011</risdate><volume>26</volume><issue>2</issue><spage>811</spage><epage>819</epage><pages>811-819</pages><issn>0885-8950</issn><eissn>1558-0679</eissn><coden>ITPSEG</coden><abstract>This paper presents a comprehensive approach to probabilistic characterization of aggregated load pattern of low-voltage consumers. Different from previous methods, consumer load patterns obtained from load survey are converted to empirical cumulative density functions. The functions are then used to address stochastic nature of load pattern in any given point of distribution network. The proposed approach is adopted to investigate the effect of load models on the characterization of aggregated load patterns. In addition, a goodness-of-fit analysis has been carried out to show that the load models can significantly affect the accuracy of aggregated load modeling. It is demonstrated that the constant power (real and reactive) load model which is normally adopted in most distribution network management studies may lead to misleading results compared to the actual network. Case studies are presented and discussed with reference to a real distribution network. The results verify that the proposed method is accurate and flexible, and the voltage-dependent load model is the most promising solution for the aggregated load modeling.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPWRS.2010.2062542</doi><tpages>9</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0885-8950
ispartof IEEE transactions on power systems, 2011-05, Vol.26 (2), p.811-819
issn 0885-8950
1558-0679
language eng
recordid cdi_proquest_journals_863357230
source IEEE Electronic Library (IEL)
subjects Accuracy
Conferences
Consumers
Data models
Density
Load modeling
Mathematical models
Networks
Power demand
power distribution
Probabilistic logic
Probabilistic methods
Probability theory
Reactive power
Stress concentration
Studies
Voltage measurement
title Effect of Load Models on Probabilistic Characterization of Aggregated Load Patterns
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T01%3A11%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20Load%20Models%20on%20Probabilistic%20Characterization%20of%20Aggregated%20Load%20Patterns&rft.jtitle=IEEE%20transactions%20on%20power%20systems&rft.au=Mousavi,%20S%20M&rft.date=2011-05&rft.volume=26&rft.issue=2&rft.spage=811&rft.epage=819&rft.pages=811-819&rft.issn=0885-8950&rft.eissn=1558-0679&rft.coden=ITPSEG&rft_id=info:doi/10.1109/TPWRS.2010.2062542&rft_dat=%3Cproquest_RIE%3E2329185691%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=863357230&rft_id=info:pmid/&rft_ieee_id=5559495&rfr_iscdi=true