Active Vibration Isolation Using an Electrical Damper or an Electrical Dynamic Absorber

This paper describes a theoretical and experimental study to show how an electrical damper or an electrical dynamic absorber, implemented using an electromagnetic actuator and an accelerometer, can control vibration transmission through a vibration isolator. The electrical damper is realized by feed...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on control systems technology 2008-03, Vol.16 (2), p.245-254
Hauptverfasser: Sang-Myeong Kim, Pietrzko, S., Brennan, M.J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 254
container_issue 2
container_start_page 245
container_title IEEE transactions on control systems technology
container_volume 16
creator Sang-Myeong Kim
Pietrzko, S.
Brennan, M.J.
description This paper describes a theoretical and experimental study to show how an electrical damper or an electrical dynamic absorber, implemented using an electromagnetic actuator and an accelerometer, can control vibration transmission through a vibration isolator. The electrical damper is realized by feeding back the equipment velocity to the actuator with constant gain. The electrical dynamic absorber is realized by feeding back the equipment acceleration through a second-order low-pass filter. Because it is found that the plant on a flexible base is asymptotically similar to that on a rigid base, the optimal parameters of the control filter are determined analytically, independent of the base dynamics. Experimental results show that the electrical dynamic absorber has a similar performance to the electrical damper. The maximum reduction in transmitted vibration achieved was about 38 dB for both methods. It is also shown that the electrical dynamic absorber is more robust to undesirable dynamics outside the control bandwidth. Another advantage of the electrical dynamic absorber is that it does not require an integrator to transform acceleration into velocity.
doi_str_mv 10.1109/TCST.2007.903376
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_863323532</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4425378</ieee_id><sourcerecordid>34562188</sourcerecordid><originalsourceid>FETCH-LOGICAL-c425t-8af1bdf9974bc5bb16e61870a0989ebb49e8261ff3d09f8ee61ce0e10a33c1f63</originalsourceid><addsrcrecordid>eNp9kU1rGzEQhkVpIK7Te6CXpdD2tO5oZ6XVHo2TpoFADnGSo5DkUZFZ77rSupB_X5kNPuSQw3ww88zAzMvYJYcF59D-XK8e1osKoFm0gNjID2zGhVAlKCk-5hwkllKgPGefUtoC8FpUzYw9L90Y_lHxFGw0Yxj64jYN3ZQ9ptD_KUxfXHfkxhic6Yors9tTLIb4tv7Sm11wxdKmIVqKF-zMmy7R59c4Z4-_rter3-Xd_c3tanlXuroSY6mM53bj27aprRPWckmSqwYMtKola-uWVCW597iB1ivKXUdAHAyi417inP2Y9u7j8PdAadS7kBx1nelpOCStFMi64RVm8vu7JNZCVlypDH59A26HQ-zzFVpJxApFtjmDCXJxSCmS1_sYdia-aA76KIg-CqKPguhJkDzy7XWvSfllPprehXSaq4BjjdnN2ZeJC0R0atf5X9go_A_DppMT</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>863323532</pqid></control><display><type>article</type><title>Active Vibration Isolation Using an Electrical Damper or an Electrical Dynamic Absorber</title><source>IEEE Electronic Library (IEL)</source><creator>Sang-Myeong Kim ; Pietrzko, S. ; Brennan, M.J.</creator><creatorcontrib>Sang-Myeong Kim ; Pietrzko, S. ; Brennan, M.J.</creatorcontrib><description>This paper describes a theoretical and experimental study to show how an electrical damper or an electrical dynamic absorber, implemented using an electromagnetic actuator and an accelerometer, can control vibration transmission through a vibration isolator. The electrical damper is realized by feeding back the equipment velocity to the actuator with constant gain. The electrical dynamic absorber is realized by feeding back the equipment acceleration through a second-order low-pass filter. Because it is found that the plant on a flexible base is asymptotically similar to that on a rigid base, the optimal parameters of the control filter are determined analytically, independent of the base dynamics. Experimental results show that the electrical dynamic absorber has a similar performance to the electrical damper. The maximum reduction in transmitted vibration achieved was about 38 dB for both methods. It is also shown that the electrical dynamic absorber is more robust to undesirable dynamics outside the control bandwidth. Another advantage of the electrical dynamic absorber is that it does not require an integrator to transform acceleration into velocity.</description><identifier>ISSN: 1063-6536</identifier><identifier>EISSN: 1558-0865</identifier><identifier>DOI: 10.1109/TCST.2007.903376</identifier><identifier>CODEN: IETTE2</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Acceleration ; Acceleration-position feedback (APF) ; Accelerometers ; Actuators ; Applied sciences ; Asymptotic properties ; Computer science; control theory; systems ; Control theory. Systems ; Dampers ; Damping ; direct velocity feedback (DVFB) ; Dynamic tests ; Dynamics ; electrical damper ; electrical dynamic absorber ; Exact sciences and technology ; Feeding ; Fundamental areas of phenomenology (including applications) ; Isolators ; Low pass filters ; Optimal control ; Physics ; Robust control ; Shock absorbers ; Solid mechanics ; Structural and continuum mechanics ; Studies ; Vibration ; Vibration control ; Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</subject><ispartof>IEEE transactions on control systems technology, 2008-03, Vol.16 (2), p.245-254</ispartof><rights>2008 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2008</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c425t-8af1bdf9974bc5bb16e61870a0989ebb49e8261ff3d09f8ee61ce0e10a33c1f63</citedby><cites>FETCH-LOGICAL-c425t-8af1bdf9974bc5bb16e61870a0989ebb49e8261ff3d09f8ee61ce0e10a33c1f63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4425378$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4425378$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20134301$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Sang-Myeong Kim</creatorcontrib><creatorcontrib>Pietrzko, S.</creatorcontrib><creatorcontrib>Brennan, M.J.</creatorcontrib><title>Active Vibration Isolation Using an Electrical Damper or an Electrical Dynamic Absorber</title><title>IEEE transactions on control systems technology</title><addtitle>TCST</addtitle><description>This paper describes a theoretical and experimental study to show how an electrical damper or an electrical dynamic absorber, implemented using an electromagnetic actuator and an accelerometer, can control vibration transmission through a vibration isolator. The electrical damper is realized by feeding back the equipment velocity to the actuator with constant gain. The electrical dynamic absorber is realized by feeding back the equipment acceleration through a second-order low-pass filter. Because it is found that the plant on a flexible base is asymptotically similar to that on a rigid base, the optimal parameters of the control filter are determined analytically, independent of the base dynamics. Experimental results show that the electrical dynamic absorber has a similar performance to the electrical damper. The maximum reduction in transmitted vibration achieved was about 38 dB for both methods. It is also shown that the electrical dynamic absorber is more robust to undesirable dynamics outside the control bandwidth. Another advantage of the electrical dynamic absorber is that it does not require an integrator to transform acceleration into velocity.</description><subject>Acceleration</subject><subject>Acceleration-position feedback (APF)</subject><subject>Accelerometers</subject><subject>Actuators</subject><subject>Applied sciences</subject><subject>Asymptotic properties</subject><subject>Computer science; control theory; systems</subject><subject>Control theory. Systems</subject><subject>Dampers</subject><subject>Damping</subject><subject>direct velocity feedback (DVFB)</subject><subject>Dynamic tests</subject><subject>Dynamics</subject><subject>electrical damper</subject><subject>electrical dynamic absorber</subject><subject>Exact sciences and technology</subject><subject>Feeding</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Isolators</subject><subject>Low pass filters</subject><subject>Optimal control</subject><subject>Physics</subject><subject>Robust control</subject><subject>Shock absorbers</subject><subject>Solid mechanics</subject><subject>Structural and continuum mechanics</subject><subject>Studies</subject><subject>Vibration</subject><subject>Vibration control</subject><subject>Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</subject><issn>1063-6536</issn><issn>1558-0865</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kU1rGzEQhkVpIK7Te6CXpdD2tO5oZ6XVHo2TpoFADnGSo5DkUZFZ77rSupB_X5kNPuSQw3ww88zAzMvYJYcF59D-XK8e1osKoFm0gNjID2zGhVAlKCk-5hwkllKgPGefUtoC8FpUzYw9L90Y_lHxFGw0Yxj64jYN3ZQ9ptD_KUxfXHfkxhic6Yors9tTLIb4tv7Sm11wxdKmIVqKF-zMmy7R59c4Z4-_rter3-Xd_c3tanlXuroSY6mM53bj27aprRPWckmSqwYMtKola-uWVCW597iB1ivKXUdAHAyi417inP2Y9u7j8PdAadS7kBx1nelpOCStFMi64RVm8vu7JNZCVlypDH59A26HQ-zzFVpJxApFtjmDCXJxSCmS1_sYdia-aA76KIg-CqKPguhJkDzy7XWvSfllPprehXSaq4BjjdnN2ZeJC0R0atf5X9go_A_DppMT</recordid><startdate>20080301</startdate><enddate>20080301</enddate><creator>Sang-Myeong Kim</creator><creator>Pietrzko, S.</creator><creator>Brennan, M.J.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope><scope>F28</scope></search><sort><creationdate>20080301</creationdate><title>Active Vibration Isolation Using an Electrical Damper or an Electrical Dynamic Absorber</title><author>Sang-Myeong Kim ; Pietrzko, S. ; Brennan, M.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c425t-8af1bdf9974bc5bb16e61870a0989ebb49e8261ff3d09f8ee61ce0e10a33c1f63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Acceleration</topic><topic>Acceleration-position feedback (APF)</topic><topic>Accelerometers</topic><topic>Actuators</topic><topic>Applied sciences</topic><topic>Asymptotic properties</topic><topic>Computer science; control theory; systems</topic><topic>Control theory. Systems</topic><topic>Dampers</topic><topic>Damping</topic><topic>direct velocity feedback (DVFB)</topic><topic>Dynamic tests</topic><topic>Dynamics</topic><topic>electrical damper</topic><topic>electrical dynamic absorber</topic><topic>Exact sciences and technology</topic><topic>Feeding</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Isolators</topic><topic>Low pass filters</topic><topic>Optimal control</topic><topic>Physics</topic><topic>Robust control</topic><topic>Shock absorbers</topic><topic>Solid mechanics</topic><topic>Structural and continuum mechanics</topic><topic>Studies</topic><topic>Vibration</topic><topic>Vibration control</topic><topic>Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sang-Myeong Kim</creatorcontrib><creatorcontrib>Pietrzko, S.</creatorcontrib><creatorcontrib>Brennan, M.J.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><jtitle>IEEE transactions on control systems technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sang-Myeong Kim</au><au>Pietrzko, S.</au><au>Brennan, M.J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Active Vibration Isolation Using an Electrical Damper or an Electrical Dynamic Absorber</atitle><jtitle>IEEE transactions on control systems technology</jtitle><stitle>TCST</stitle><date>2008-03-01</date><risdate>2008</risdate><volume>16</volume><issue>2</issue><spage>245</spage><epage>254</epage><pages>245-254</pages><issn>1063-6536</issn><eissn>1558-0865</eissn><coden>IETTE2</coden><abstract>This paper describes a theoretical and experimental study to show how an electrical damper or an electrical dynamic absorber, implemented using an electromagnetic actuator and an accelerometer, can control vibration transmission through a vibration isolator. The electrical damper is realized by feeding back the equipment velocity to the actuator with constant gain. The electrical dynamic absorber is realized by feeding back the equipment acceleration through a second-order low-pass filter. Because it is found that the plant on a flexible base is asymptotically similar to that on a rigid base, the optimal parameters of the control filter are determined analytically, independent of the base dynamics. Experimental results show that the electrical dynamic absorber has a similar performance to the electrical damper. The maximum reduction in transmitted vibration achieved was about 38 dB for both methods. It is also shown that the electrical dynamic absorber is more robust to undesirable dynamics outside the control bandwidth. Another advantage of the electrical dynamic absorber is that it does not require an integrator to transform acceleration into velocity.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TCST.2007.903376</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1063-6536
ispartof IEEE transactions on control systems technology, 2008-03, Vol.16 (2), p.245-254
issn 1063-6536
1558-0865
language eng
recordid cdi_proquest_journals_863323532
source IEEE Electronic Library (IEL)
subjects Acceleration
Acceleration-position feedback (APF)
Accelerometers
Actuators
Applied sciences
Asymptotic properties
Computer science
control theory
systems
Control theory. Systems
Dampers
Damping
direct velocity feedback (DVFB)
Dynamic tests
Dynamics
electrical damper
electrical dynamic absorber
Exact sciences and technology
Feeding
Fundamental areas of phenomenology (including applications)
Isolators
Low pass filters
Optimal control
Physics
Robust control
Shock absorbers
Solid mechanics
Structural and continuum mechanics
Studies
Vibration
Vibration control
Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)
title Active Vibration Isolation Using an Electrical Damper or an Electrical Dynamic Absorber
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T19%3A10%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Active%20Vibration%20Isolation%20Using%20an%20Electrical%20Damper%20or%20an%20Electrical%20Dynamic%20Absorber&rft.jtitle=IEEE%20transactions%20on%20control%20systems%20technology&rft.au=Sang-Myeong%20Kim&rft.date=2008-03-01&rft.volume=16&rft.issue=2&rft.spage=245&rft.epage=254&rft.pages=245-254&rft.issn=1063-6536&rft.eissn=1558-0865&rft.coden=IETTE2&rft_id=info:doi/10.1109/TCST.2007.903376&rft_dat=%3Cproquest_RIE%3E34562188%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=863323532&rft_id=info:pmid/&rft_ieee_id=4425378&rfr_iscdi=true