Active Vibration Isolation Using an Electrical Damper or an Electrical Dynamic Absorber
This paper describes a theoretical and experimental study to show how an electrical damper or an electrical dynamic absorber, implemented using an electromagnetic actuator and an accelerometer, can control vibration transmission through a vibration isolator. The electrical damper is realized by feed...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on control systems technology 2008-03, Vol.16 (2), p.245-254 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 254 |
---|---|
container_issue | 2 |
container_start_page | 245 |
container_title | IEEE transactions on control systems technology |
container_volume | 16 |
creator | Sang-Myeong Kim Pietrzko, S. Brennan, M.J. |
description | This paper describes a theoretical and experimental study to show how an electrical damper or an electrical dynamic absorber, implemented using an electromagnetic actuator and an accelerometer, can control vibration transmission through a vibration isolator. The electrical damper is realized by feeding back the equipment velocity to the actuator with constant gain. The electrical dynamic absorber is realized by feeding back the equipment acceleration through a second-order low-pass filter. Because it is found that the plant on a flexible base is asymptotically similar to that on a rigid base, the optimal parameters of the control filter are determined analytically, independent of the base dynamics. Experimental results show that the electrical dynamic absorber has a similar performance to the electrical damper. The maximum reduction in transmitted vibration achieved was about 38 dB for both methods. It is also shown that the electrical dynamic absorber is more robust to undesirable dynamics outside the control bandwidth. Another advantage of the electrical dynamic absorber is that it does not require an integrator to transform acceleration into velocity. |
doi_str_mv | 10.1109/TCST.2007.903376 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_863323532</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4425378</ieee_id><sourcerecordid>34562188</sourcerecordid><originalsourceid>FETCH-LOGICAL-c425t-8af1bdf9974bc5bb16e61870a0989ebb49e8261ff3d09f8ee61ce0e10a33c1f63</originalsourceid><addsrcrecordid>eNp9kU1rGzEQhkVpIK7Te6CXpdD2tO5oZ6XVHo2TpoFADnGSo5DkUZFZ77rSupB_X5kNPuSQw3ww88zAzMvYJYcF59D-XK8e1osKoFm0gNjID2zGhVAlKCk-5hwkllKgPGefUtoC8FpUzYw9L90Y_lHxFGw0Yxj64jYN3ZQ9ptD_KUxfXHfkxhic6Yors9tTLIb4tv7Sm11wxdKmIVqKF-zMmy7R59c4Z4-_rter3-Xd_c3tanlXuroSY6mM53bj27aprRPWckmSqwYMtKola-uWVCW597iB1ivKXUdAHAyi417inP2Y9u7j8PdAadS7kBx1nelpOCStFMi64RVm8vu7JNZCVlypDH59A26HQ-zzFVpJxApFtjmDCXJxSCmS1_sYdia-aA76KIg-CqKPguhJkDzy7XWvSfllPprehXSaq4BjjdnN2ZeJC0R0atf5X9go_A_DppMT</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>863323532</pqid></control><display><type>article</type><title>Active Vibration Isolation Using an Electrical Damper or an Electrical Dynamic Absorber</title><source>IEEE Electronic Library (IEL)</source><creator>Sang-Myeong Kim ; Pietrzko, S. ; Brennan, M.J.</creator><creatorcontrib>Sang-Myeong Kim ; Pietrzko, S. ; Brennan, M.J.</creatorcontrib><description>This paper describes a theoretical and experimental study to show how an electrical damper or an electrical dynamic absorber, implemented using an electromagnetic actuator and an accelerometer, can control vibration transmission through a vibration isolator. The electrical damper is realized by feeding back the equipment velocity to the actuator with constant gain. The electrical dynamic absorber is realized by feeding back the equipment acceleration through a second-order low-pass filter. Because it is found that the plant on a flexible base is asymptotically similar to that on a rigid base, the optimal parameters of the control filter are determined analytically, independent of the base dynamics. Experimental results show that the electrical dynamic absorber has a similar performance to the electrical damper. The maximum reduction in transmitted vibration achieved was about 38 dB for both methods. It is also shown that the electrical dynamic absorber is more robust to undesirable dynamics outside the control bandwidth. Another advantage of the electrical dynamic absorber is that it does not require an integrator to transform acceleration into velocity.</description><identifier>ISSN: 1063-6536</identifier><identifier>EISSN: 1558-0865</identifier><identifier>DOI: 10.1109/TCST.2007.903376</identifier><identifier>CODEN: IETTE2</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Acceleration ; Acceleration-position feedback (APF) ; Accelerometers ; Actuators ; Applied sciences ; Asymptotic properties ; Computer science; control theory; systems ; Control theory. Systems ; Dampers ; Damping ; direct velocity feedback (DVFB) ; Dynamic tests ; Dynamics ; electrical damper ; electrical dynamic absorber ; Exact sciences and technology ; Feeding ; Fundamental areas of phenomenology (including applications) ; Isolators ; Low pass filters ; Optimal control ; Physics ; Robust control ; Shock absorbers ; Solid mechanics ; Structural and continuum mechanics ; Studies ; Vibration ; Vibration control ; Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</subject><ispartof>IEEE transactions on control systems technology, 2008-03, Vol.16 (2), p.245-254</ispartof><rights>2008 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2008</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c425t-8af1bdf9974bc5bb16e61870a0989ebb49e8261ff3d09f8ee61ce0e10a33c1f63</citedby><cites>FETCH-LOGICAL-c425t-8af1bdf9974bc5bb16e61870a0989ebb49e8261ff3d09f8ee61ce0e10a33c1f63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4425378$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4425378$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20134301$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Sang-Myeong Kim</creatorcontrib><creatorcontrib>Pietrzko, S.</creatorcontrib><creatorcontrib>Brennan, M.J.</creatorcontrib><title>Active Vibration Isolation Using an Electrical Damper or an Electrical Dynamic Absorber</title><title>IEEE transactions on control systems technology</title><addtitle>TCST</addtitle><description>This paper describes a theoretical and experimental study to show how an electrical damper or an electrical dynamic absorber, implemented using an electromagnetic actuator and an accelerometer, can control vibration transmission through a vibration isolator. The electrical damper is realized by feeding back the equipment velocity to the actuator with constant gain. The electrical dynamic absorber is realized by feeding back the equipment acceleration through a second-order low-pass filter. Because it is found that the plant on a flexible base is asymptotically similar to that on a rigid base, the optimal parameters of the control filter are determined analytically, independent of the base dynamics. Experimental results show that the electrical dynamic absorber has a similar performance to the electrical damper. The maximum reduction in transmitted vibration achieved was about 38 dB for both methods. It is also shown that the electrical dynamic absorber is more robust to undesirable dynamics outside the control bandwidth. Another advantage of the electrical dynamic absorber is that it does not require an integrator to transform acceleration into velocity.</description><subject>Acceleration</subject><subject>Acceleration-position feedback (APF)</subject><subject>Accelerometers</subject><subject>Actuators</subject><subject>Applied sciences</subject><subject>Asymptotic properties</subject><subject>Computer science; control theory; systems</subject><subject>Control theory. Systems</subject><subject>Dampers</subject><subject>Damping</subject><subject>direct velocity feedback (DVFB)</subject><subject>Dynamic tests</subject><subject>Dynamics</subject><subject>electrical damper</subject><subject>electrical dynamic absorber</subject><subject>Exact sciences and technology</subject><subject>Feeding</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Isolators</subject><subject>Low pass filters</subject><subject>Optimal control</subject><subject>Physics</subject><subject>Robust control</subject><subject>Shock absorbers</subject><subject>Solid mechanics</subject><subject>Structural and continuum mechanics</subject><subject>Studies</subject><subject>Vibration</subject><subject>Vibration control</subject><subject>Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</subject><issn>1063-6536</issn><issn>1558-0865</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kU1rGzEQhkVpIK7Te6CXpdD2tO5oZ6XVHo2TpoFADnGSo5DkUZFZ77rSupB_X5kNPuSQw3ww88zAzMvYJYcF59D-XK8e1osKoFm0gNjID2zGhVAlKCk-5hwkllKgPGefUtoC8FpUzYw9L90Y_lHxFGw0Yxj64jYN3ZQ9ptD_KUxfXHfkxhic6Yors9tTLIb4tv7Sm11wxdKmIVqKF-zMmy7R59c4Z4-_rter3-Xd_c3tanlXuroSY6mM53bj27aprRPWckmSqwYMtKola-uWVCW597iB1ivKXUdAHAyi417inP2Y9u7j8PdAadS7kBx1nelpOCStFMi64RVm8vu7JNZCVlypDH59A26HQ-zzFVpJxApFtjmDCXJxSCmS1_sYdia-aA76KIg-CqKPguhJkDzy7XWvSfllPprehXSaq4BjjdnN2ZeJC0R0atf5X9go_A_DppMT</recordid><startdate>20080301</startdate><enddate>20080301</enddate><creator>Sang-Myeong Kim</creator><creator>Pietrzko, S.</creator><creator>Brennan, M.J.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope><scope>F28</scope></search><sort><creationdate>20080301</creationdate><title>Active Vibration Isolation Using an Electrical Damper or an Electrical Dynamic Absorber</title><author>Sang-Myeong Kim ; Pietrzko, S. ; Brennan, M.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c425t-8af1bdf9974bc5bb16e61870a0989ebb49e8261ff3d09f8ee61ce0e10a33c1f63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Acceleration</topic><topic>Acceleration-position feedback (APF)</topic><topic>Accelerometers</topic><topic>Actuators</topic><topic>Applied sciences</topic><topic>Asymptotic properties</topic><topic>Computer science; control theory; systems</topic><topic>Control theory. Systems</topic><topic>Dampers</topic><topic>Damping</topic><topic>direct velocity feedback (DVFB)</topic><topic>Dynamic tests</topic><topic>Dynamics</topic><topic>electrical damper</topic><topic>electrical dynamic absorber</topic><topic>Exact sciences and technology</topic><topic>Feeding</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Isolators</topic><topic>Low pass filters</topic><topic>Optimal control</topic><topic>Physics</topic><topic>Robust control</topic><topic>Shock absorbers</topic><topic>Solid mechanics</topic><topic>Structural and continuum mechanics</topic><topic>Studies</topic><topic>Vibration</topic><topic>Vibration control</topic><topic>Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sang-Myeong Kim</creatorcontrib><creatorcontrib>Pietrzko, S.</creatorcontrib><creatorcontrib>Brennan, M.J.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><jtitle>IEEE transactions on control systems technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sang-Myeong Kim</au><au>Pietrzko, S.</au><au>Brennan, M.J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Active Vibration Isolation Using an Electrical Damper or an Electrical Dynamic Absorber</atitle><jtitle>IEEE transactions on control systems technology</jtitle><stitle>TCST</stitle><date>2008-03-01</date><risdate>2008</risdate><volume>16</volume><issue>2</issue><spage>245</spage><epage>254</epage><pages>245-254</pages><issn>1063-6536</issn><eissn>1558-0865</eissn><coden>IETTE2</coden><abstract>This paper describes a theoretical and experimental study to show how an electrical damper or an electrical dynamic absorber, implemented using an electromagnetic actuator and an accelerometer, can control vibration transmission through a vibration isolator. The electrical damper is realized by feeding back the equipment velocity to the actuator with constant gain. The electrical dynamic absorber is realized by feeding back the equipment acceleration through a second-order low-pass filter. Because it is found that the plant on a flexible base is asymptotically similar to that on a rigid base, the optimal parameters of the control filter are determined analytically, independent of the base dynamics. Experimental results show that the electrical dynamic absorber has a similar performance to the electrical damper. The maximum reduction in transmitted vibration achieved was about 38 dB for both methods. It is also shown that the electrical dynamic absorber is more robust to undesirable dynamics outside the control bandwidth. Another advantage of the electrical dynamic absorber is that it does not require an integrator to transform acceleration into velocity.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TCST.2007.903376</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1063-6536 |
ispartof | IEEE transactions on control systems technology, 2008-03, Vol.16 (2), p.245-254 |
issn | 1063-6536 1558-0865 |
language | eng |
recordid | cdi_proquest_journals_863323532 |
source | IEEE Electronic Library (IEL) |
subjects | Acceleration Acceleration-position feedback (APF) Accelerometers Actuators Applied sciences Asymptotic properties Computer science control theory systems Control theory. Systems Dampers Damping direct velocity feedback (DVFB) Dynamic tests Dynamics electrical damper electrical dynamic absorber Exact sciences and technology Feeding Fundamental areas of phenomenology (including applications) Isolators Low pass filters Optimal control Physics Robust control Shock absorbers Solid mechanics Structural and continuum mechanics Studies Vibration Vibration control Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...) |
title | Active Vibration Isolation Using an Electrical Damper or an Electrical Dynamic Absorber |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T19%3A10%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Active%20Vibration%20Isolation%20Using%20an%20Electrical%20Damper%20or%20an%20Electrical%20Dynamic%20Absorber&rft.jtitle=IEEE%20transactions%20on%20control%20systems%20technology&rft.au=Sang-Myeong%20Kim&rft.date=2008-03-01&rft.volume=16&rft.issue=2&rft.spage=245&rft.epage=254&rft.pages=245-254&rft.issn=1063-6536&rft.eissn=1558-0865&rft.coden=IETTE2&rft_id=info:doi/10.1109/TCST.2007.903376&rft_dat=%3Cproquest_RIE%3E34562188%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=863323532&rft_id=info:pmid/&rft_ieee_id=4425378&rfr_iscdi=true |