Higher-Order SVD-Based Subspace Estimation to Improve the Parameter Estimation Accuracy in Multidimensional Harmonic Retrieval Problems

Multidimensional harmonic retrieval problems are encountered in a variety of signal processing applications including radar, sonar, communications, medical imaging, and the estimation of the parameters of the dominant multipath components from MIMO channel measurements. R -dimensional subspace-based...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on signal processing 2008-07, Vol.56 (7), p.3198-3213
Hauptverfasser: Haardt, M., Roemer, F., Del Galdo, G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3213
container_issue 7
container_start_page 3198
container_title IEEE transactions on signal processing
container_volume 56
creator Haardt, M.
Roemer, F.
Del Galdo, G.
description Multidimensional harmonic retrieval problems are encountered in a variety of signal processing applications including radar, sonar, communications, medical imaging, and the estimation of the parameters of the dominant multipath components from MIMO channel measurements. R -dimensional subspace-based methods, such as R -D Unitary ESPRIT, R -D RARE, or R -D MUSIC, are frequently used for this task. Since the measurement data is multidimensional, current approaches require stacking the dimensions into one highly structured matrix. However, in the conventional subspace estimation step, e.g., via an SVD of the latter matrix, this structure is not exploited. In this paper, we define a measurement tensor and estimate the signal subspace through a higher-order SVD. This allows us to exploit the structure inherent in the measurement data already in the first step of the algorithm which leads to better estimates of the signal subspace. We show how the concepts of forward-backward averaging and the mapping of centro-Hermitian matrices to real-valued matrices of the same size can be extended to tensors. As examples, we develop the R -D standard Tensor-ESPRIT and the R -D Unitary Tensor-ESPRIT algorithms. However, these new concepts can be applied to any multidimensional subspace-based parameter estimation scheme. Significant improvements of the resulting parameter estimation accuracy are achieved if there is at least one of the R dimensions, which possesses a number of sensors that is larger than the number of sources. This can already be observed in the two-dimensional case.
doi_str_mv 10.1109/TSP.2008.917929
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_863263331</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4545266</ieee_id><sourcerecordid>2328869441</sourcerecordid><originalsourceid>FETCH-LOGICAL-c416t-459053cb80ab19ac6b93954ffa7aa93e2d3ba3f09258fa39a55133f7db45fe723</originalsourceid><addsrcrecordid>eNpdkU1P3DAQhqOqSKXAmUMvVqWqp-za8UfiI6XQXQnEigXUWzRxxsUoH4vtIPEL-Nt4tQhVnMaaed6R33mz7JjRGWNUz2_Wq1lBaTXTrNSF_pTtMy1YTkWpPqc3lTyXVfn3S_Y1hAdKmRBa7WcvC_fvHn1-5Vv0ZH33O_8FAVuynpqwAYPkLETXQ3TjQOJIlv3Gj09I4j2SFXjoMSbZf8yJMZMH80zcQC6nLrrW9TiENIKOLMD34-AMucboHT6l1sqPTYd9OMz2LHQBj97qQXZ7fnZzusgvrv4sT08uciOYirmQOhkxTUWhYRqMajTXUlgLJYDmWLS8AW6pLmRlgWuQknFuy7YR0mJZ8IPs525v8vE4YYh174LBroMBxynUVUVVuhiTifz-gXwYJ59sJEjxQnHOWYLmO8j4MQSPtt74dAr_XDNab2OpUyz1NpZ6F0tS_HhbC8FAZz0MxoV3WUGFopXefvTbjnOI-D4WUshCKf4KTUiXeQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>863263331</pqid></control><display><type>article</type><title>Higher-Order SVD-Based Subspace Estimation to Improve the Parameter Estimation Accuracy in Multidimensional Harmonic Retrieval Problems</title><source>IEEE Electronic Library (IEL)</source><creator>Haardt, M. ; Roemer, F. ; Del Galdo, G.</creator><creatorcontrib>Haardt, M. ; Roemer, F. ; Del Galdo, G.</creatorcontrib><description>Multidimensional harmonic retrieval problems are encountered in a variety of signal processing applications including radar, sonar, communications, medical imaging, and the estimation of the parameters of the dominant multipath components from MIMO channel measurements. R -dimensional subspace-based methods, such as R -D Unitary ESPRIT, R -D RARE, or R -D MUSIC, are frequently used for this task. Since the measurement data is multidimensional, current approaches require stacking the dimensions into one highly structured matrix. However, in the conventional subspace estimation step, e.g., via an SVD of the latter matrix, this structure is not exploited. In this paper, we define a measurement tensor and estimate the signal subspace through a higher-order SVD. This allows us to exploit the structure inherent in the measurement data already in the first step of the algorithm which leads to better estimates of the signal subspace. We show how the concepts of forward-backward averaging and the mapping of centro-Hermitian matrices to real-valued matrices of the same size can be extended to tensors. As examples, we develop the R -D standard Tensor-ESPRIT and the R -D Unitary Tensor-ESPRIT algorithms. However, these new concepts can be applied to any multidimensional subspace-based parameter estimation scheme. Significant improvements of the resulting parameter estimation accuracy are achieved if there is at least one of the R dimensions, which possesses a number of sensors that is larger than the number of sources. This can already be observed in the two-dimensional case.</description><identifier>ISSN: 1053-587X</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/TSP.2008.917929</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Algorithms ; Antenna arrays ; Applied sciences ; array signal processing ; Biological and medical sciences ; Computerized, statistical medical data processing and models in biomedicine ; Detection, estimation, filtering, equalization, prediction ; direction of arrival estimation ; Exact sciences and technology ; harmonic analysis ; Harmonics ; HOSVD ; Image retrieval ; Information, signal and communications theory ; Mathematical analysis ; Matrices ; Medical management aid. Diagnosis aid ; Medical sciences ; Miscellaneous ; Multidimensional signal processing ; multidimensional signal processsing ; Multidimensional systems ; Parameter estimation ; Radar applications ; Radar imaging ; Radar measurements ; Radar signal processing ; Retrieval ; Signal and communications theory ; Signal processing ; Signal processing algorithms ; Signal, noise ; Studies ; subspace estimation ; Subspaces ; Telecommunications and information theory ; Tensile stress ; Tensor-ESPRIT ; Tensors</subject><ispartof>IEEE transactions on signal processing, 2008-07, Vol.56 (7), p.3198-3213</ispartof><rights>2008 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c416t-459053cb80ab19ac6b93954ffa7aa93e2d3ba3f09258fa39a55133f7db45fe723</citedby><cites>FETCH-LOGICAL-c416t-459053cb80ab19ac6b93954ffa7aa93e2d3ba3f09258fa39a55133f7db45fe723</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4545266$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,778,782,794,27907,27908,54741</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4545266$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20460892$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Haardt, M.</creatorcontrib><creatorcontrib>Roemer, F.</creatorcontrib><creatorcontrib>Del Galdo, G.</creatorcontrib><title>Higher-Order SVD-Based Subspace Estimation to Improve the Parameter Estimation Accuracy in Multidimensional Harmonic Retrieval Problems</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description>Multidimensional harmonic retrieval problems are encountered in a variety of signal processing applications including radar, sonar, communications, medical imaging, and the estimation of the parameters of the dominant multipath components from MIMO channel measurements. R -dimensional subspace-based methods, such as R -D Unitary ESPRIT, R -D RARE, or R -D MUSIC, are frequently used for this task. Since the measurement data is multidimensional, current approaches require stacking the dimensions into one highly structured matrix. However, in the conventional subspace estimation step, e.g., via an SVD of the latter matrix, this structure is not exploited. In this paper, we define a measurement tensor and estimate the signal subspace through a higher-order SVD. This allows us to exploit the structure inherent in the measurement data already in the first step of the algorithm which leads to better estimates of the signal subspace. We show how the concepts of forward-backward averaging and the mapping of centro-Hermitian matrices to real-valued matrices of the same size can be extended to tensors. As examples, we develop the R -D standard Tensor-ESPRIT and the R -D Unitary Tensor-ESPRIT algorithms. However, these new concepts can be applied to any multidimensional subspace-based parameter estimation scheme. Significant improvements of the resulting parameter estimation accuracy are achieved if there is at least one of the R dimensions, which possesses a number of sensors that is larger than the number of sources. This can already be observed in the two-dimensional case.</description><subject>Algorithms</subject><subject>Antenna arrays</subject><subject>Applied sciences</subject><subject>array signal processing</subject><subject>Biological and medical sciences</subject><subject>Computerized, statistical medical data processing and models in biomedicine</subject><subject>Detection, estimation, filtering, equalization, prediction</subject><subject>direction of arrival estimation</subject><subject>Exact sciences and technology</subject><subject>harmonic analysis</subject><subject>Harmonics</subject><subject>HOSVD</subject><subject>Image retrieval</subject><subject>Information, signal and communications theory</subject><subject>Mathematical analysis</subject><subject>Matrices</subject><subject>Medical management aid. Diagnosis aid</subject><subject>Medical sciences</subject><subject>Miscellaneous</subject><subject>Multidimensional signal processing</subject><subject>multidimensional signal processsing</subject><subject>Multidimensional systems</subject><subject>Parameter estimation</subject><subject>Radar applications</subject><subject>Radar imaging</subject><subject>Radar measurements</subject><subject>Radar signal processing</subject><subject>Retrieval</subject><subject>Signal and communications theory</subject><subject>Signal processing</subject><subject>Signal processing algorithms</subject><subject>Signal, noise</subject><subject>Studies</subject><subject>subspace estimation</subject><subject>Subspaces</subject><subject>Telecommunications and information theory</subject><subject>Tensile stress</subject><subject>Tensor-ESPRIT</subject><subject>Tensors</subject><issn>1053-587X</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkU1P3DAQhqOqSKXAmUMvVqWqp-za8UfiI6XQXQnEigXUWzRxxsUoH4vtIPEL-Nt4tQhVnMaaed6R33mz7JjRGWNUz2_Wq1lBaTXTrNSF_pTtMy1YTkWpPqc3lTyXVfn3S_Y1hAdKmRBa7WcvC_fvHn1-5Vv0ZH33O_8FAVuynpqwAYPkLETXQ3TjQOJIlv3Gj09I4j2SFXjoMSbZf8yJMZMH80zcQC6nLrrW9TiENIKOLMD34-AMucboHT6l1sqPTYd9OMz2LHQBj97qQXZ7fnZzusgvrv4sT08uciOYirmQOhkxTUWhYRqMajTXUlgLJYDmWLS8AW6pLmRlgWuQknFuy7YR0mJZ8IPs525v8vE4YYh174LBroMBxynUVUVVuhiTifz-gXwYJ59sJEjxQnHOWYLmO8j4MQSPtt74dAr_XDNab2OpUyz1NpZ6F0tS_HhbC8FAZz0MxoV3WUGFopXefvTbjnOI-D4WUshCKf4KTUiXeQ</recordid><startdate>20080701</startdate><enddate>20080701</enddate><creator>Haardt, M.</creator><creator>Roemer, F.</creator><creator>Del Galdo, G.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20080701</creationdate><title>Higher-Order SVD-Based Subspace Estimation to Improve the Parameter Estimation Accuracy in Multidimensional Harmonic Retrieval Problems</title><author>Haardt, M. ; Roemer, F. ; Del Galdo, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c416t-459053cb80ab19ac6b93954ffa7aa93e2d3ba3f09258fa39a55133f7db45fe723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Algorithms</topic><topic>Antenna arrays</topic><topic>Applied sciences</topic><topic>array signal processing</topic><topic>Biological and medical sciences</topic><topic>Computerized, statistical medical data processing and models in biomedicine</topic><topic>Detection, estimation, filtering, equalization, prediction</topic><topic>direction of arrival estimation</topic><topic>Exact sciences and technology</topic><topic>harmonic analysis</topic><topic>Harmonics</topic><topic>HOSVD</topic><topic>Image retrieval</topic><topic>Information, signal and communications theory</topic><topic>Mathematical analysis</topic><topic>Matrices</topic><topic>Medical management aid. Diagnosis aid</topic><topic>Medical sciences</topic><topic>Miscellaneous</topic><topic>Multidimensional signal processing</topic><topic>multidimensional signal processsing</topic><topic>Multidimensional systems</topic><topic>Parameter estimation</topic><topic>Radar applications</topic><topic>Radar imaging</topic><topic>Radar measurements</topic><topic>Radar signal processing</topic><topic>Retrieval</topic><topic>Signal and communications theory</topic><topic>Signal processing</topic><topic>Signal processing algorithms</topic><topic>Signal, noise</topic><topic>Studies</topic><topic>subspace estimation</topic><topic>Subspaces</topic><topic>Telecommunications and information theory</topic><topic>Tensile stress</topic><topic>Tensor-ESPRIT</topic><topic>Tensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Haardt, M.</creatorcontrib><creatorcontrib>Roemer, F.</creatorcontrib><creatorcontrib>Del Galdo, G.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Haardt, M.</au><au>Roemer, F.</au><au>Del Galdo, G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Higher-Order SVD-Based Subspace Estimation to Improve the Parameter Estimation Accuracy in Multidimensional Harmonic Retrieval Problems</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>2008-07-01</date><risdate>2008</risdate><volume>56</volume><issue>7</issue><spage>3198</spage><epage>3213</epage><pages>3198-3213</pages><issn>1053-587X</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract>Multidimensional harmonic retrieval problems are encountered in a variety of signal processing applications including radar, sonar, communications, medical imaging, and the estimation of the parameters of the dominant multipath components from MIMO channel measurements. R -dimensional subspace-based methods, such as R -D Unitary ESPRIT, R -D RARE, or R -D MUSIC, are frequently used for this task. Since the measurement data is multidimensional, current approaches require stacking the dimensions into one highly structured matrix. However, in the conventional subspace estimation step, e.g., via an SVD of the latter matrix, this structure is not exploited. In this paper, we define a measurement tensor and estimate the signal subspace through a higher-order SVD. This allows us to exploit the structure inherent in the measurement data already in the first step of the algorithm which leads to better estimates of the signal subspace. We show how the concepts of forward-backward averaging and the mapping of centro-Hermitian matrices to real-valued matrices of the same size can be extended to tensors. As examples, we develop the R -D standard Tensor-ESPRIT and the R -D Unitary Tensor-ESPRIT algorithms. However, these new concepts can be applied to any multidimensional subspace-based parameter estimation scheme. Significant improvements of the resulting parameter estimation accuracy are achieved if there is at least one of the R dimensions, which possesses a number of sensors that is larger than the number of sources. This can already be observed in the two-dimensional case.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TSP.2008.917929</doi><tpages>16</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1053-587X
ispartof IEEE transactions on signal processing, 2008-07, Vol.56 (7), p.3198-3213
issn 1053-587X
1941-0476
language eng
recordid cdi_proquest_journals_863263331
source IEEE Electronic Library (IEL)
subjects Algorithms
Antenna arrays
Applied sciences
array signal processing
Biological and medical sciences
Computerized, statistical medical data processing and models in biomedicine
Detection, estimation, filtering, equalization, prediction
direction of arrival estimation
Exact sciences and technology
harmonic analysis
Harmonics
HOSVD
Image retrieval
Information, signal and communications theory
Mathematical analysis
Matrices
Medical management aid. Diagnosis aid
Medical sciences
Miscellaneous
Multidimensional signal processing
multidimensional signal processsing
Multidimensional systems
Parameter estimation
Radar applications
Radar imaging
Radar measurements
Radar signal processing
Retrieval
Signal and communications theory
Signal processing
Signal processing algorithms
Signal, noise
Studies
subspace estimation
Subspaces
Telecommunications and information theory
Tensile stress
Tensor-ESPRIT
Tensors
title Higher-Order SVD-Based Subspace Estimation to Improve the Parameter Estimation Accuracy in Multidimensional Harmonic Retrieval Problems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T07%3A55%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Higher-Order%20SVD-Based%20Subspace%20Estimation%20to%20Improve%20the%20Parameter%20Estimation%20Accuracy%20in%20Multidimensional%20Harmonic%20Retrieval%20Problems&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=Haardt,%20M.&rft.date=2008-07-01&rft.volume=56&rft.issue=7&rft.spage=3198&rft.epage=3213&rft.pages=3198-3213&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/TSP.2008.917929&rft_dat=%3Cproquest_RIE%3E2328869441%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=863263331&rft_id=info:pmid/&rft_ieee_id=4545266&rfr_iscdi=true