One or Two Frequencies? The Empirical Mode Decomposition Answers

This paper investigates how the empirical mode decomposition (EMD), a fully data-driven technique recently introduced for decomposing any oscillatory waveform into zero-mean components, behaves in the case of a composite two-tones signal. Essentially two regimes are shown to exist, depending on whet...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on signal processing 2008-01, Vol.56 (1), p.85-95
Hauptverfasser: Rilling, G., Flandrin, P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 95
container_issue 1
container_start_page 85
container_title IEEE transactions on signal processing
container_volume 56
creator Rilling, G.
Flandrin, P.
description This paper investigates how the empirical mode decomposition (EMD), a fully data-driven technique recently introduced for decomposing any oscillatory waveform into zero-mean components, behaves in the case of a composite two-tones signal. Essentially two regimes are shown to exist, depending on whether the amplitude ratio of the tones is greater or smaller than unity, and the corresponding resolution properties of the EMD turn out to be in good agreement with intuition and physical interpretation. A refined analysis is provided for quantifying the observed behaviors and theoretical claims are supported by numerical experiments. The analysis is then extended to a nonlinear model where the same two regimes are shown to exist and the resolution properties of the EMD are assessed.
doi_str_mv 10.1109/TSP.2007.906771
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_863203044</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4359551</ieee_id><sourcerecordid>889378136</sourcerecordid><originalsourceid>FETCH-LOGICAL-c503t-72cc16e9b957a356cb73c1817f0fb793eb1a464913dc74d45a15702c5c73ecd03</originalsourceid><addsrcrecordid>eNp90U1LJDEQBuBGVtBVzx720izsCgs9VnW-OqfdwW8YUXAEbyGTqcZIT2dMZlb892ZocWEPnhLIU0Wq3qI4RBghgj6e3t2OagA10iCVwq1iFzXHCriSX_IdBKtEox52iq8pPQEg51ruFn9ueipDLKcvoTyP9Lym3nlKv8vpI5Vni6WP3tmuvA5zKk_JhcUyJL_yoS_HfXqhmPaL7dZ2iQ7ez73i_vxsenJZTW4urk7Gk8oJYKtK1c6hJD3TQlkmpJsp5rBB1UI7U5rRDC2XXCObO8XnXFgUCmonnGLk5sD2il9D30fbmWX0CxtfTbDeXI4nhvrUGUBd5zH1X8z4aMDLGPJIaWUWPjnqOttTWCfTNJqpBpnM8uenkvFGy6bmGX7_Dz6FdezzyKaRrAYGfIOOB-RiSClS-_FTBLNJyeSUzCYlM6SUK368t7UpL7qNNu8__SvTWjCBOrtvg_NE9PHMmdBCIHsDeUuXmA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>863203044</pqid></control><display><type>article</type><title>One or Two Frequencies? The Empirical Mode Decomposition Answers</title><source>IEEE Electronic Library (IEL)</source><creator>Rilling, G. ; Flandrin, P.</creator><creatorcontrib>Rilling, G. ; Flandrin, P.</creatorcontrib><description>This paper investigates how the empirical mode decomposition (EMD), a fully data-driven technique recently introduced for decomposing any oscillatory waveform into zero-mean components, behaves in the case of a composite two-tones signal. Essentially two regimes are shown to exist, depending on whether the amplitude ratio of the tones is greater or smaller than unity, and the corresponding resolution properties of the EMD turn out to be in good agreement with intuition and physical interpretation. A refined analysis is provided for quantifying the observed behaviors and theoretical claims are supported by numerical experiments. The analysis is then extended to a nonlinear model where the same two regimes are shown to exist and the resolution properties of the EMD are assessed.</description><identifier>ISSN: 1053-587X</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/TSP.2007.906771</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Amplitude estimation ; Amplitude modulation ; Amplitudes ; Applied sciences ; Computer Science ; Decomposition ; Ear ; Empirical analysis ; Empirical mode decomposition (EMD) ; Engineering Sciences ; Exact sciences and technology ; Frequency estimation ; Humans ; Information, signal and communications theory ; Mathematical models ; Nonlinearity ; Physics ; resolution ; Signal analysis ; Signal and communications theory ; Signal and Image Processing ; Signal processing ; Signal representation. Spectral analysis ; Signal resolution ; Signal, noise ; Spectral analysis ; Telecommunications and information theory ; time frequency ; Time frequency analysis ; Unity ; Waveforms</subject><ispartof>IEEE transactions on signal processing, 2008-01, Vol.56 (1), p.85-95</ispartof><rights>2008 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2008</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c503t-72cc16e9b957a356cb73c1817f0fb793eb1a464913dc74d45a15702c5c73ecd03</citedby><cites>FETCH-LOGICAL-c503t-72cc16e9b957a356cb73c1817f0fb793eb1a464913dc74d45a15702c5c73ecd03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4359551$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,885,4024,27923,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4359551$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=19953519$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://ens-lyon.hal.science/ensl-01921059$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Rilling, G.</creatorcontrib><creatorcontrib>Flandrin, P.</creatorcontrib><title>One or Two Frequencies? The Empirical Mode Decomposition Answers</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description>This paper investigates how the empirical mode decomposition (EMD), a fully data-driven technique recently introduced for decomposing any oscillatory waveform into zero-mean components, behaves in the case of a composite two-tones signal. Essentially two regimes are shown to exist, depending on whether the amplitude ratio of the tones is greater or smaller than unity, and the corresponding resolution properties of the EMD turn out to be in good agreement with intuition and physical interpretation. A refined analysis is provided for quantifying the observed behaviors and theoretical claims are supported by numerical experiments. The analysis is then extended to a nonlinear model where the same two regimes are shown to exist and the resolution properties of the EMD are assessed.</description><subject>Amplitude estimation</subject><subject>Amplitude modulation</subject><subject>Amplitudes</subject><subject>Applied sciences</subject><subject>Computer Science</subject><subject>Decomposition</subject><subject>Ear</subject><subject>Empirical analysis</subject><subject>Empirical mode decomposition (EMD)</subject><subject>Engineering Sciences</subject><subject>Exact sciences and technology</subject><subject>Frequency estimation</subject><subject>Humans</subject><subject>Information, signal and communications theory</subject><subject>Mathematical models</subject><subject>Nonlinearity</subject><subject>Physics</subject><subject>resolution</subject><subject>Signal analysis</subject><subject>Signal and communications theory</subject><subject>Signal and Image Processing</subject><subject>Signal processing</subject><subject>Signal representation. Spectral analysis</subject><subject>Signal resolution</subject><subject>Signal, noise</subject><subject>Spectral analysis</subject><subject>Telecommunications and information theory</subject><subject>time frequency</subject><subject>Time frequency analysis</subject><subject>Unity</subject><subject>Waveforms</subject><issn>1053-587X</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp90U1LJDEQBuBGVtBVzx720izsCgs9VnW-OqfdwW8YUXAEbyGTqcZIT2dMZlb892ZocWEPnhLIU0Wq3qI4RBghgj6e3t2OagA10iCVwq1iFzXHCriSX_IdBKtEox52iq8pPQEg51ruFn9ueipDLKcvoTyP9Lym3nlKv8vpI5Vni6WP3tmuvA5zKk_JhcUyJL_yoS_HfXqhmPaL7dZ2iQ7ez73i_vxsenJZTW4urk7Gk8oJYKtK1c6hJD3TQlkmpJsp5rBB1UI7U5rRDC2XXCObO8XnXFgUCmonnGLk5sD2il9D30fbmWX0CxtfTbDeXI4nhvrUGUBd5zH1X8z4aMDLGPJIaWUWPjnqOttTWCfTNJqpBpnM8uenkvFGy6bmGX7_Dz6FdezzyKaRrAYGfIOOB-RiSClS-_FTBLNJyeSUzCYlM6SUK368t7UpL7qNNu8__SvTWjCBOrtvg_NE9PHMmdBCIHsDeUuXmA</recordid><startdate>200801</startdate><enddate>200801</enddate><creator>Rilling, G.</creator><creator>Flandrin, P.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope><scope>1XC</scope></search><sort><creationdate>200801</creationdate><title>One or Two Frequencies? The Empirical Mode Decomposition Answers</title><author>Rilling, G. ; Flandrin, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c503t-72cc16e9b957a356cb73c1817f0fb793eb1a464913dc74d45a15702c5c73ecd03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Amplitude estimation</topic><topic>Amplitude modulation</topic><topic>Amplitudes</topic><topic>Applied sciences</topic><topic>Computer Science</topic><topic>Decomposition</topic><topic>Ear</topic><topic>Empirical analysis</topic><topic>Empirical mode decomposition (EMD)</topic><topic>Engineering Sciences</topic><topic>Exact sciences and technology</topic><topic>Frequency estimation</topic><topic>Humans</topic><topic>Information, signal and communications theory</topic><topic>Mathematical models</topic><topic>Nonlinearity</topic><topic>Physics</topic><topic>resolution</topic><topic>Signal analysis</topic><topic>Signal and communications theory</topic><topic>Signal and Image Processing</topic><topic>Signal processing</topic><topic>Signal representation. Spectral analysis</topic><topic>Signal resolution</topic><topic>Signal, noise</topic><topic>Spectral analysis</topic><topic>Telecommunications and information theory</topic><topic>time frequency</topic><topic>Time frequency analysis</topic><topic>Unity</topic><topic>Waveforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rilling, G.</creatorcontrib><creatorcontrib>Flandrin, P.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Rilling, G.</au><au>Flandrin, P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>One or Two Frequencies? The Empirical Mode Decomposition Answers</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>2008-01</date><risdate>2008</risdate><volume>56</volume><issue>1</issue><spage>85</spage><epage>95</epage><pages>85-95</pages><issn>1053-587X</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract>This paper investigates how the empirical mode decomposition (EMD), a fully data-driven technique recently introduced for decomposing any oscillatory waveform into zero-mean components, behaves in the case of a composite two-tones signal. Essentially two regimes are shown to exist, depending on whether the amplitude ratio of the tones is greater or smaller than unity, and the corresponding resolution properties of the EMD turn out to be in good agreement with intuition and physical interpretation. A refined analysis is provided for quantifying the observed behaviors and theoretical claims are supported by numerical experiments. The analysis is then extended to a nonlinear model where the same two regimes are shown to exist and the resolution properties of the EMD are assessed.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TSP.2007.906771</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1053-587X
ispartof IEEE transactions on signal processing, 2008-01, Vol.56 (1), p.85-95
issn 1053-587X
1941-0476
language eng
recordid cdi_proquest_journals_863203044
source IEEE Electronic Library (IEL)
subjects Amplitude estimation
Amplitude modulation
Amplitudes
Applied sciences
Computer Science
Decomposition
Ear
Empirical analysis
Empirical mode decomposition (EMD)
Engineering Sciences
Exact sciences and technology
Frequency estimation
Humans
Information, signal and communications theory
Mathematical models
Nonlinearity
Physics
resolution
Signal analysis
Signal and communications theory
Signal and Image Processing
Signal processing
Signal representation. Spectral analysis
Signal resolution
Signal, noise
Spectral analysis
Telecommunications and information theory
time frequency
Time frequency analysis
Unity
Waveforms
title One or Two Frequencies? The Empirical Mode Decomposition Answers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T06%3A14%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=One%20or%20Two%20Frequencies?%20The%20Empirical%20Mode%20Decomposition%20Answers&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=Rilling,%20G.&rft.date=2008-01&rft.volume=56&rft.issue=1&rft.spage=85&rft.epage=95&rft.pages=85-95&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/TSP.2007.906771&rft_dat=%3Cproquest_RIE%3E889378136%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=863203044&rft_id=info:pmid/&rft_ieee_id=4359551&rfr_iscdi=true