Effect of gold oxidation state on the epoxidation and hydrogenation of propylene on Au/TS-1
Treatment of gold samples supported on TS-1 with sodium cyanide solutions resulted in the precipitation of gold (I) cyanide. When this occurred, the selectivity of the reaction of propylene with hydrogen and oxygen mixtures shifted from propylene oxide to propylene, a selectivity characteristic of P...
Gespeichert in:
Veröffentlicht in: | Journal of catalysis 2011-05, Vol.280 (1), p.40-49 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 49 |
---|---|
container_issue | 1 |
container_start_page | 40 |
container_title | Journal of catalysis |
container_volume | 280 |
creator | Gaudet, Jason Bando, Kyoko K. Song, Zhaoxia Fujitani, Tadahiro Zhang, Wei Su, Dang Sheng Oyama, S. Ted |
description | Treatment of gold samples supported on TS-1 with sodium cyanide solutions resulted in the precipitation of gold (I) cyanide. When this occurred, the selectivity of the reaction of propylene with hydrogen and oxygen mixtures shifted from propylene oxide to propylene, a selectivity characteristic of Pt.
[Display omitted]
►Treatment of Au nanoparticles on TS-1 with NaCN solutions precipitated gold (I) cyanide. ► Metallic gold Au(0) produced propylene oxide (PO) in the reaction of C
3H
6 with H
2/O
2. ► Gold (I) cyanide produced propane in the same reaction, a product characteristic of Pt. ► In situ X-ray absorption showed that Au(0) formed PO but Au(+1) formed propane. ► Au(+1) has Pt-like properties.
Gold nanoparticles on titanium oxide and titania-silica supports are active for the formation of propylene oxide by the oxidation of propylene with hydrogen and oxygen mixtures. Cyanide treatment of gold supported on titanosilicate zeolite supports (Au/TS-1) yielded unexpected results. Catalysts treated with weak solutions of sodium cyanide resulted in preferential removal of small gold particles, while catalysts treated with strong solutions resulted in dissolution of the gold and re-precipitation as gold (+1) cyanide. X-ray absorption spectroscopy demonstrated that catalysts that produce propylene oxide in the presence of hydrogen and oxygen mixtures had supported gold (+3) oxide nanoparticles of 3
nm size after synthesis, which were reduced to gold metal at reaction conditions. Samples treated with strong solutions of sodium cyanide resulted in supported gold (+1) cyanide particles of large size, 9–11
nm. These particles did not produce propylene oxide but, surprisingly, showed high selectivity toward propylene hydrogenation. Increasing gold (+1) cyanide particle size resulted in a decrease in hydrogenation activity. |
doi_str_mv | 10.1016/j.jcat.2011.03.001 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_863127845</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S002195171100073X</els_id><sourcerecordid>2328360721</sourcerecordid><originalsourceid>FETCH-LOGICAL-c447t-bfe6aa59fba249796780145ce21eb8ddd5b6fe8bec077efcc1b9ce6c89b8b18d3</originalsourceid><addsrcrecordid>eNp9kMtKxDAUhoMoOF5ewI1FcNma00su4EbEGwgu1JWLkCYnY8vYjElHnLc3Y0V3rhKS7z_n5yPkCGgBFNhZX_RGj0VJAQpaFZTCFpkBlTQvmay3yYzSEnLZAN8lezH2CYCmETPycuUcmjHzLpv7hc38Z2f12Pkhi6MeMUuX8RUzXP596MFmr2sb_ByH6SWFl8Ev1wscvhMXq7OnxxwOyI7Ti4iHP-c-eb6-erq8ze8fbu4uL-5zU9d8zFuHTOtGulaXteSScUGhbgyWgK2w1jYtcyhaNJRzdMZAKw0yI2QrWhC22icn09xU4n2FcVS9X4UhrVSCVVByUTcJKifIBB9jQKeWoXvTYa2Aqo1D1auNQ7VxqGilkqIUOv2ZrKPRCxf0YLr4myxrSG0rlrjjiXPaKz0PiXl-TIMYTd45lyIR5xOBScRHh0FF0-Fg0HYh-VfWd_8V-QIsapFr</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>863127845</pqid></control><display><type>article</type><title>Effect of gold oxidation state on the epoxidation and hydrogenation of propylene on Au/TS-1</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Gaudet, Jason ; Bando, Kyoko K. ; Song, Zhaoxia ; Fujitani, Tadahiro ; Zhang, Wei ; Su, Dang Sheng ; Oyama, S. Ted</creator><creatorcontrib>Gaudet, Jason ; Bando, Kyoko K. ; Song, Zhaoxia ; Fujitani, Tadahiro ; Zhang, Wei ; Su, Dang Sheng ; Oyama, S. Ted</creatorcontrib><description>Treatment of gold samples supported on TS-1 with sodium cyanide solutions resulted in the precipitation of gold (I) cyanide. When this occurred, the selectivity of the reaction of propylene with hydrogen and oxygen mixtures shifted from propylene oxide to propylene, a selectivity characteristic of Pt.
[Display omitted]
►Treatment of Au nanoparticles on TS-1 with NaCN solutions precipitated gold (I) cyanide. ► Metallic gold Au(0) produced propylene oxide (PO) in the reaction of C
3H
6 with H
2/O
2. ► Gold (I) cyanide produced propane in the same reaction, a product characteristic of Pt. ► In situ X-ray absorption showed that Au(0) formed PO but Au(+1) formed propane. ► Au(+1) has Pt-like properties.
Gold nanoparticles on titanium oxide and titania-silica supports are active for the formation of propylene oxide by the oxidation of propylene with hydrogen and oxygen mixtures. Cyanide treatment of gold supported on titanosilicate zeolite supports (Au/TS-1) yielded unexpected results. Catalysts treated with weak solutions of sodium cyanide resulted in preferential removal of small gold particles, while catalysts treated with strong solutions resulted in dissolution of the gold and re-precipitation as gold (+1) cyanide. X-ray absorption spectroscopy demonstrated that catalysts that produce propylene oxide in the presence of hydrogen and oxygen mixtures had supported gold (+3) oxide nanoparticles of 3
nm size after synthesis, which were reduced to gold metal at reaction conditions. Samples treated with strong solutions of sodium cyanide resulted in supported gold (+1) cyanide particles of large size, 9–11
nm. These particles did not produce propylene oxide but, surprisingly, showed high selectivity toward propylene hydrogenation. Increasing gold (+1) cyanide particle size resulted in a decrease in hydrogenation activity.</description><identifier>ISSN: 0021-9517</identifier><identifier>EISSN: 1090-2694</identifier><identifier>DOI: 10.1016/j.jcat.2011.03.001</identifier><identifier>CODEN: JCTLA5</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>Catalysis ; catalysts ; Chemistry ; Colloidal state and disperse state ; Cyanide ; cyanides ; Exact sciences and technology ; EXAFS ; General and physical chemistry ; Gold ; hydrogen ; Hydrogenation ; Ion-exchange ; nanogold ; Nanoparticles ; Oxidation ; Oxidation state ; oxides ; oxygen ; Particle size ; Physical and chemical studies. Granulometry. Electrokinetic phenomena ; Propylene ; Propylene oxide ; sodium ; Surface physical chemistry ; Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry ; titanium ; X-ray absorption spectroscopy ; XANES ; zeolites ; Zeolites: preparations and properties</subject><ispartof>Journal of catalysis, 2011-05, Vol.280 (1), p.40-49</ispartof><rights>2011 Elsevier Inc.</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © 2011 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c447t-bfe6aa59fba249796780145ce21eb8ddd5b6fe8bec077efcc1b9ce6c89b8b18d3</citedby><cites>FETCH-LOGICAL-c447t-bfe6aa59fba249796780145ce21eb8ddd5b6fe8bec077efcc1b9ce6c89b8b18d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jcat.2011.03.001$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24196736$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Gaudet, Jason</creatorcontrib><creatorcontrib>Bando, Kyoko K.</creatorcontrib><creatorcontrib>Song, Zhaoxia</creatorcontrib><creatorcontrib>Fujitani, Tadahiro</creatorcontrib><creatorcontrib>Zhang, Wei</creatorcontrib><creatorcontrib>Su, Dang Sheng</creatorcontrib><creatorcontrib>Oyama, S. Ted</creatorcontrib><title>Effect of gold oxidation state on the epoxidation and hydrogenation of propylene on Au/TS-1</title><title>Journal of catalysis</title><description>Treatment of gold samples supported on TS-1 with sodium cyanide solutions resulted in the precipitation of gold (I) cyanide. When this occurred, the selectivity of the reaction of propylene with hydrogen and oxygen mixtures shifted from propylene oxide to propylene, a selectivity characteristic of Pt.
[Display omitted]
►Treatment of Au nanoparticles on TS-1 with NaCN solutions precipitated gold (I) cyanide. ► Metallic gold Au(0) produced propylene oxide (PO) in the reaction of C
3H
6 with H
2/O
2. ► Gold (I) cyanide produced propane in the same reaction, a product characteristic of Pt. ► In situ X-ray absorption showed that Au(0) formed PO but Au(+1) formed propane. ► Au(+1) has Pt-like properties.
Gold nanoparticles on titanium oxide and titania-silica supports are active for the formation of propylene oxide by the oxidation of propylene with hydrogen and oxygen mixtures. Cyanide treatment of gold supported on titanosilicate zeolite supports (Au/TS-1) yielded unexpected results. Catalysts treated with weak solutions of sodium cyanide resulted in preferential removal of small gold particles, while catalysts treated with strong solutions resulted in dissolution of the gold and re-precipitation as gold (+1) cyanide. X-ray absorption spectroscopy demonstrated that catalysts that produce propylene oxide in the presence of hydrogen and oxygen mixtures had supported gold (+3) oxide nanoparticles of 3
nm size after synthesis, which were reduced to gold metal at reaction conditions. Samples treated with strong solutions of sodium cyanide resulted in supported gold (+1) cyanide particles of large size, 9–11
nm. These particles did not produce propylene oxide but, surprisingly, showed high selectivity toward propylene hydrogenation. Increasing gold (+1) cyanide particle size resulted in a decrease in hydrogenation activity.</description><subject>Catalysis</subject><subject>catalysts</subject><subject>Chemistry</subject><subject>Colloidal state and disperse state</subject><subject>Cyanide</subject><subject>cyanides</subject><subject>Exact sciences and technology</subject><subject>EXAFS</subject><subject>General and physical chemistry</subject><subject>Gold</subject><subject>hydrogen</subject><subject>Hydrogenation</subject><subject>Ion-exchange</subject><subject>nanogold</subject><subject>Nanoparticles</subject><subject>Oxidation</subject><subject>Oxidation state</subject><subject>oxides</subject><subject>oxygen</subject><subject>Particle size</subject><subject>Physical and chemical studies. Granulometry. Electrokinetic phenomena</subject><subject>Propylene</subject><subject>Propylene oxide</subject><subject>sodium</subject><subject>Surface physical chemistry</subject><subject>Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</subject><subject>titanium</subject><subject>X-ray absorption spectroscopy</subject><subject>XANES</subject><subject>zeolites</subject><subject>Zeolites: preparations and properties</subject><issn>0021-9517</issn><issn>1090-2694</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKxDAUhoMoOF5ewI1FcNma00su4EbEGwgu1JWLkCYnY8vYjElHnLc3Y0V3rhKS7z_n5yPkCGgBFNhZX_RGj0VJAQpaFZTCFpkBlTQvmay3yYzSEnLZAN8lezH2CYCmETPycuUcmjHzLpv7hc38Z2f12Pkhi6MeMUuX8RUzXP596MFmr2sb_ByH6SWFl8Ev1wscvhMXq7OnxxwOyI7Ti4iHP-c-eb6-erq8ze8fbu4uL-5zU9d8zFuHTOtGulaXteSScUGhbgyWgK2w1jYtcyhaNJRzdMZAKw0yI2QrWhC22icn09xU4n2FcVS9X4UhrVSCVVByUTcJKifIBB9jQKeWoXvTYa2Aqo1D1auNQ7VxqGilkqIUOv2ZrKPRCxf0YLr4myxrSG0rlrjjiXPaKz0PiXl-TIMYTd45lyIR5xOBScRHh0FF0-Fg0HYh-VfWd_8V-QIsapFr</recordid><startdate>20110516</startdate><enddate>20110516</enddate><creator>Gaudet, Jason</creator><creator>Bando, Kyoko K.</creator><creator>Song, Zhaoxia</creator><creator>Fujitani, Tadahiro</creator><creator>Zhang, Wei</creator><creator>Su, Dang Sheng</creator><creator>Oyama, S. Ted</creator><general>Elsevier Inc</general><general>Elsevier</general><general>Elsevier BV</general><scope>FBQ</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20110516</creationdate><title>Effect of gold oxidation state on the epoxidation and hydrogenation of propylene on Au/TS-1</title><author>Gaudet, Jason ; Bando, Kyoko K. ; Song, Zhaoxia ; Fujitani, Tadahiro ; Zhang, Wei ; Su, Dang Sheng ; Oyama, S. Ted</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c447t-bfe6aa59fba249796780145ce21eb8ddd5b6fe8bec077efcc1b9ce6c89b8b18d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Catalysis</topic><topic>catalysts</topic><topic>Chemistry</topic><topic>Colloidal state and disperse state</topic><topic>Cyanide</topic><topic>cyanides</topic><topic>Exact sciences and technology</topic><topic>EXAFS</topic><topic>General and physical chemistry</topic><topic>Gold</topic><topic>hydrogen</topic><topic>Hydrogenation</topic><topic>Ion-exchange</topic><topic>nanogold</topic><topic>Nanoparticles</topic><topic>Oxidation</topic><topic>Oxidation state</topic><topic>oxides</topic><topic>oxygen</topic><topic>Particle size</topic><topic>Physical and chemical studies. Granulometry. Electrokinetic phenomena</topic><topic>Propylene</topic><topic>Propylene oxide</topic><topic>sodium</topic><topic>Surface physical chemistry</topic><topic>Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</topic><topic>titanium</topic><topic>X-ray absorption spectroscopy</topic><topic>XANES</topic><topic>zeolites</topic><topic>Zeolites: preparations and properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gaudet, Jason</creatorcontrib><creatorcontrib>Bando, Kyoko K.</creatorcontrib><creatorcontrib>Song, Zhaoxia</creatorcontrib><creatorcontrib>Fujitani, Tadahiro</creatorcontrib><creatorcontrib>Zhang, Wei</creatorcontrib><creatorcontrib>Su, Dang Sheng</creatorcontrib><creatorcontrib>Oyama, S. Ted</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Journal of catalysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gaudet, Jason</au><au>Bando, Kyoko K.</au><au>Song, Zhaoxia</au><au>Fujitani, Tadahiro</au><au>Zhang, Wei</au><au>Su, Dang Sheng</au><au>Oyama, S. Ted</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of gold oxidation state on the epoxidation and hydrogenation of propylene on Au/TS-1</atitle><jtitle>Journal of catalysis</jtitle><date>2011-05-16</date><risdate>2011</risdate><volume>280</volume><issue>1</issue><spage>40</spage><epage>49</epage><pages>40-49</pages><issn>0021-9517</issn><eissn>1090-2694</eissn><coden>JCTLA5</coden><abstract>Treatment of gold samples supported on TS-1 with sodium cyanide solutions resulted in the precipitation of gold (I) cyanide. When this occurred, the selectivity of the reaction of propylene with hydrogen and oxygen mixtures shifted from propylene oxide to propylene, a selectivity characteristic of Pt.
[Display omitted]
►Treatment of Au nanoparticles on TS-1 with NaCN solutions precipitated gold (I) cyanide. ► Metallic gold Au(0) produced propylene oxide (PO) in the reaction of C
3H
6 with H
2/O
2. ► Gold (I) cyanide produced propane in the same reaction, a product characteristic of Pt. ► In situ X-ray absorption showed that Au(0) formed PO but Au(+1) formed propane. ► Au(+1) has Pt-like properties.
Gold nanoparticles on titanium oxide and titania-silica supports are active for the formation of propylene oxide by the oxidation of propylene with hydrogen and oxygen mixtures. Cyanide treatment of gold supported on titanosilicate zeolite supports (Au/TS-1) yielded unexpected results. Catalysts treated with weak solutions of sodium cyanide resulted in preferential removal of small gold particles, while catalysts treated with strong solutions resulted in dissolution of the gold and re-precipitation as gold (+1) cyanide. X-ray absorption spectroscopy demonstrated that catalysts that produce propylene oxide in the presence of hydrogen and oxygen mixtures had supported gold (+3) oxide nanoparticles of 3
nm size after synthesis, which were reduced to gold metal at reaction conditions. Samples treated with strong solutions of sodium cyanide resulted in supported gold (+1) cyanide particles of large size, 9–11
nm. These particles did not produce propylene oxide but, surprisingly, showed high selectivity toward propylene hydrogenation. Increasing gold (+1) cyanide particle size resulted in a decrease in hydrogenation activity.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><doi>10.1016/j.jcat.2011.03.001</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9517 |
ispartof | Journal of catalysis, 2011-05, Vol.280 (1), p.40-49 |
issn | 0021-9517 1090-2694 |
language | eng |
recordid | cdi_proquest_journals_863127845 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Catalysis catalysts Chemistry Colloidal state and disperse state Cyanide cyanides Exact sciences and technology EXAFS General and physical chemistry Gold hydrogen Hydrogenation Ion-exchange nanogold Nanoparticles Oxidation Oxidation state oxides oxygen Particle size Physical and chemical studies. Granulometry. Electrokinetic phenomena Propylene Propylene oxide sodium Surface physical chemistry Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry titanium X-ray absorption spectroscopy XANES zeolites Zeolites: preparations and properties |
title | Effect of gold oxidation state on the epoxidation and hydrogenation of propylene on Au/TS-1 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T18%3A08%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20gold%20oxidation%20state%20on%20the%20epoxidation%20and%20hydrogenation%20of%20propylene%20on%20Au/TS-1&rft.jtitle=Journal%20of%20catalysis&rft.au=Gaudet,%20Jason&rft.date=2011-05-16&rft.volume=280&rft.issue=1&rft.spage=40&rft.epage=49&rft.pages=40-49&rft.issn=0021-9517&rft.eissn=1090-2694&rft.coden=JCTLA5&rft_id=info:doi/10.1016/j.jcat.2011.03.001&rft_dat=%3Cproquest_cross%3E2328360721%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=863127845&rft_id=info:pmid/&rft_els_id=S002195171100073X&rfr_iscdi=true |