Passivity Enforcement Using an Infeasible-Interior-Point Primal-Dual Method
Application of the network equivalent concept for external system representation in electromagnetic transient studies is well known. However, the challenge in application of an equivalent model, approximated by rational functions, is to guarantee passivity of the corresponding model. Therefore, ther...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on power systems 2008-08, Vol.23 (3), p.966-974 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 974 |
---|---|
container_issue | 3 |
container_start_page | 966 |
container_title | IEEE transactions on power systems |
container_volume | 23 |
creator | Porkar, B. Vakilian, M. Iravani, R. Shahrtash, S.M. |
description | Application of the network equivalent concept for external system representation in electromagnetic transient studies is well known. However, the challenge in application of an equivalent model, approximated by rational functions, is to guarantee passivity of the corresponding model. Therefore, there is a need to enforce passivity of the equivalent model. In this paper, the passivity enforcement problem is first formulated as a quadratic programming (QP) problem, and then solved based on an efficient implementation, using an infeasible-interior-point primal-dual method. An application of this method for passivity enforcement of a six-port admittance model (with large passivity violations) demonstrates its effectiveness and computational efficiency. |
doi_str_mv | 10.1109/TPWRS.2008.922225 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_862825714</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4526214</ieee_id><sourcerecordid>1031300932</sourcerecordid><originalsourceid>FETCH-LOGICAL-c388t-70d72e0423cc3a57ac01a2fa43dba12acfbcbe77c6a46036a2b6c93064863673</originalsourceid><addsrcrecordid>eNp90b1OwzAUBWALgUQpPABiiRiAJeX63xlRKVBRRAVFjJHjOuAqTYqdIPXtcSliYMCLB3_nSr4HoWMMA4whu5xNX5-eBwRADTISD99BPcy5SkHIbBf1QCmeqozDPjoIYQEAIj700P1Uh-A-XbtORnXZeGOXtm6Tl-Dqt0TXybgurQ6uqGw6rlvrXePTaeMimXq31FV63ekqebDtezM_RHulroI9-rn7aHYzmg3v0snj7Xh4NUkNVapNJcwlscAINYZqLrUBrEmpGZ0XGhNtysIUVkojNBNAhSaFMBkFwZSgQtI-Ot-OXfnmo7OhzZcuGFtVurZNF_IsZhhwTqM8-1dSxphkEiK8-BdioJgCZJREevqHLprO1_G_uRJEES4xiwhvkfFNCN6W-WqzLb-Ok_JNX_l3X_mmr3zbV8ycbDPOWvvrGSeCxIlf8FGQLA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>862825714</pqid></control><display><type>article</type><title>Passivity Enforcement Using an Infeasible-Interior-Point Primal-Dual Method</title><source>IEEE Electronic Library (IEL)</source><creator>Porkar, B. ; Vakilian, M. ; Iravani, R. ; Shahrtash, S.M.</creator><creatorcontrib>Porkar, B. ; Vakilian, M. ; Iravani, R. ; Shahrtash, S.M.</creatorcontrib><description>Application of the network equivalent concept for external system representation in electromagnetic transient studies is well known. However, the challenge in application of an equivalent model, approximated by rational functions, is to guarantee passivity of the corresponding model. Therefore, there is a need to enforce passivity of the equivalent model. In this paper, the passivity enforcement problem is first formulated as a quadratic programming (QP) problem, and then solved based on an efficient implementation, using an infeasible-interior-point primal-dual method. An application of this method for passivity enforcement of a six-port admittance model (with large passivity violations) demonstrates its effectiveness and computational efficiency.</description><identifier>ISSN: 0885-8950</identifier><identifier>EISSN: 1558-0679</identifier><identifier>DOI: 10.1109/TPWRS.2008.922225</identifier><identifier>CODEN: ITPSEG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Admittance ; Approximation ; Computational efficiency ; Convex quadratic optimization problem ; Eigenvalues and eigenfunctions ; Electrical impedance ; Electromagnetic analysis ; Equivalence ; Frequency domain analysis ; Function approximation ; infeasible-interior-point primal-dual method ; Mathematical model ; network equivalent ; Optimization methods ; Passivity ; passivity enforcement ; Quadratic programming ; Rational functions ; Representations ; Transient analysis</subject><ispartof>IEEE transactions on power systems, 2008-08, Vol.23 (3), p.966-974</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c388t-70d72e0423cc3a57ac01a2fa43dba12acfbcbe77c6a46036a2b6c93064863673</citedby><cites>FETCH-LOGICAL-c388t-70d72e0423cc3a57ac01a2fa43dba12acfbcbe77c6a46036a2b6c93064863673</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4526214$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4526214$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Porkar, B.</creatorcontrib><creatorcontrib>Vakilian, M.</creatorcontrib><creatorcontrib>Iravani, R.</creatorcontrib><creatorcontrib>Shahrtash, S.M.</creatorcontrib><title>Passivity Enforcement Using an Infeasible-Interior-Point Primal-Dual Method</title><title>IEEE transactions on power systems</title><addtitle>TPWRS</addtitle><description>Application of the network equivalent concept for external system representation in electromagnetic transient studies is well known. However, the challenge in application of an equivalent model, approximated by rational functions, is to guarantee passivity of the corresponding model. Therefore, there is a need to enforce passivity of the equivalent model. In this paper, the passivity enforcement problem is first formulated as a quadratic programming (QP) problem, and then solved based on an efficient implementation, using an infeasible-interior-point primal-dual method. An application of this method for passivity enforcement of a six-port admittance model (with large passivity violations) demonstrates its effectiveness and computational efficiency.</description><subject>Admittance</subject><subject>Approximation</subject><subject>Computational efficiency</subject><subject>Convex quadratic optimization problem</subject><subject>Eigenvalues and eigenfunctions</subject><subject>Electrical impedance</subject><subject>Electromagnetic analysis</subject><subject>Equivalence</subject><subject>Frequency domain analysis</subject><subject>Function approximation</subject><subject>infeasible-interior-point primal-dual method</subject><subject>Mathematical model</subject><subject>network equivalent</subject><subject>Optimization methods</subject><subject>Passivity</subject><subject>passivity enforcement</subject><subject>Quadratic programming</subject><subject>Rational functions</subject><subject>Representations</subject><subject>Transient analysis</subject><issn>0885-8950</issn><issn>1558-0679</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp90b1OwzAUBWALgUQpPABiiRiAJeX63xlRKVBRRAVFjJHjOuAqTYqdIPXtcSliYMCLB3_nSr4HoWMMA4whu5xNX5-eBwRADTISD99BPcy5SkHIbBf1QCmeqozDPjoIYQEAIj700P1Uh-A-XbtORnXZeGOXtm6Tl-Dqt0TXybgurQ6uqGw6rlvrXePTaeMimXq31FV63ekqebDtezM_RHulroI9-rn7aHYzmg3v0snj7Xh4NUkNVapNJcwlscAINYZqLrUBrEmpGZ0XGhNtysIUVkojNBNAhSaFMBkFwZSgQtI-Ot-OXfnmo7OhzZcuGFtVurZNF_IsZhhwTqM8-1dSxphkEiK8-BdioJgCZJREevqHLprO1_G_uRJEES4xiwhvkfFNCN6W-WqzLb-Ok_JNX_l3X_mmr3zbV8ycbDPOWvvrGSeCxIlf8FGQLA</recordid><startdate>20080801</startdate><enddate>20080801</enddate><creator>Porkar, B.</creator><creator>Vakilian, M.</creator><creator>Iravani, R.</creator><creator>Shahrtash, S.M.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>F28</scope></search><sort><creationdate>20080801</creationdate><title>Passivity Enforcement Using an Infeasible-Interior-Point Primal-Dual Method</title><author>Porkar, B. ; Vakilian, M. ; Iravani, R. ; Shahrtash, S.M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c388t-70d72e0423cc3a57ac01a2fa43dba12acfbcbe77c6a46036a2b6c93064863673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Admittance</topic><topic>Approximation</topic><topic>Computational efficiency</topic><topic>Convex quadratic optimization problem</topic><topic>Eigenvalues and eigenfunctions</topic><topic>Electrical impedance</topic><topic>Electromagnetic analysis</topic><topic>Equivalence</topic><topic>Frequency domain analysis</topic><topic>Function approximation</topic><topic>infeasible-interior-point primal-dual method</topic><topic>Mathematical model</topic><topic>network equivalent</topic><topic>Optimization methods</topic><topic>Passivity</topic><topic>passivity enforcement</topic><topic>Quadratic programming</topic><topic>Rational functions</topic><topic>Representations</topic><topic>Transient analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Porkar, B.</creatorcontrib><creatorcontrib>Vakilian, M.</creatorcontrib><creatorcontrib>Iravani, R.</creatorcontrib><creatorcontrib>Shahrtash, S.M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><jtitle>IEEE transactions on power systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Porkar, B.</au><au>Vakilian, M.</au><au>Iravani, R.</au><au>Shahrtash, S.M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Passivity Enforcement Using an Infeasible-Interior-Point Primal-Dual Method</atitle><jtitle>IEEE transactions on power systems</jtitle><stitle>TPWRS</stitle><date>2008-08-01</date><risdate>2008</risdate><volume>23</volume><issue>3</issue><spage>966</spage><epage>974</epage><pages>966-974</pages><issn>0885-8950</issn><eissn>1558-0679</eissn><coden>ITPSEG</coden><abstract>Application of the network equivalent concept for external system representation in electromagnetic transient studies is well known. However, the challenge in application of an equivalent model, approximated by rational functions, is to guarantee passivity of the corresponding model. Therefore, there is a need to enforce passivity of the equivalent model. In this paper, the passivity enforcement problem is first formulated as a quadratic programming (QP) problem, and then solved based on an efficient implementation, using an infeasible-interior-point primal-dual method. An application of this method for passivity enforcement of a six-port admittance model (with large passivity violations) demonstrates its effectiveness and computational efficiency.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPWRS.2008.922225</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0885-8950 |
ispartof | IEEE transactions on power systems, 2008-08, Vol.23 (3), p.966-974 |
issn | 0885-8950 1558-0679 |
language | eng |
recordid | cdi_proquest_journals_862825714 |
source | IEEE Electronic Library (IEL) |
subjects | Admittance Approximation Computational efficiency Convex quadratic optimization problem Eigenvalues and eigenfunctions Electrical impedance Electromagnetic analysis Equivalence Frequency domain analysis Function approximation infeasible-interior-point primal-dual method Mathematical model network equivalent Optimization methods Passivity passivity enforcement Quadratic programming Rational functions Representations Transient analysis |
title | Passivity Enforcement Using an Infeasible-Interior-Point Primal-Dual Method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T01%3A04%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Passivity%20Enforcement%20Using%20an%20Infeasible-Interior-Point%20Primal-Dual%20Method&rft.jtitle=IEEE%20transactions%20on%20power%20systems&rft.au=Porkar,%20B.&rft.date=2008-08-01&rft.volume=23&rft.issue=3&rft.spage=966&rft.epage=974&rft.pages=966-974&rft.issn=0885-8950&rft.eissn=1558-0679&rft.coden=ITPSEG&rft_id=info:doi/10.1109/TPWRS.2008.922225&rft_dat=%3Cproquest_RIE%3E1031300932%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=862825714&rft_id=info:pmid/&rft_ieee_id=4526214&rfr_iscdi=true |