Passivity Enforcement Using an Infeasible-Interior-Point Primal-Dual Method

Application of the network equivalent concept for external system representation in electromagnetic transient studies is well known. However, the challenge in application of an equivalent model, approximated by rational functions, is to guarantee passivity of the corresponding model. Therefore, ther...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on power systems 2008-08, Vol.23 (3), p.966-974
Hauptverfasser: Porkar, B., Vakilian, M., Iravani, R., Shahrtash, S.M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 974
container_issue 3
container_start_page 966
container_title IEEE transactions on power systems
container_volume 23
creator Porkar, B.
Vakilian, M.
Iravani, R.
Shahrtash, S.M.
description Application of the network equivalent concept for external system representation in electromagnetic transient studies is well known. However, the challenge in application of an equivalent model, approximated by rational functions, is to guarantee passivity of the corresponding model. Therefore, there is a need to enforce passivity of the equivalent model. In this paper, the passivity enforcement problem is first formulated as a quadratic programming (QP) problem, and then solved based on an efficient implementation, using an infeasible-interior-point primal-dual method. An application of this method for passivity enforcement of a six-port admittance model (with large passivity violations) demonstrates its effectiveness and computational efficiency.
doi_str_mv 10.1109/TPWRS.2008.922225
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_862825714</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4526214</ieee_id><sourcerecordid>1031300932</sourcerecordid><originalsourceid>FETCH-LOGICAL-c388t-70d72e0423cc3a57ac01a2fa43dba12acfbcbe77c6a46036a2b6c93064863673</originalsourceid><addsrcrecordid>eNp90b1OwzAUBWALgUQpPABiiRiAJeX63xlRKVBRRAVFjJHjOuAqTYqdIPXtcSliYMCLB3_nSr4HoWMMA4whu5xNX5-eBwRADTISD99BPcy5SkHIbBf1QCmeqozDPjoIYQEAIj700P1Uh-A-XbtORnXZeGOXtm6Tl-Dqt0TXybgurQ6uqGw6rlvrXePTaeMimXq31FV63ekqebDtezM_RHulroI9-rn7aHYzmg3v0snj7Xh4NUkNVapNJcwlscAINYZqLrUBrEmpGZ0XGhNtysIUVkojNBNAhSaFMBkFwZSgQtI-Ot-OXfnmo7OhzZcuGFtVurZNF_IsZhhwTqM8-1dSxphkEiK8-BdioJgCZJREevqHLprO1_G_uRJEES4xiwhvkfFNCN6W-WqzLb-Ok_JNX_l3X_mmr3zbV8ycbDPOWvvrGSeCxIlf8FGQLA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>862825714</pqid></control><display><type>article</type><title>Passivity Enforcement Using an Infeasible-Interior-Point Primal-Dual Method</title><source>IEEE Electronic Library (IEL)</source><creator>Porkar, B. ; Vakilian, M. ; Iravani, R. ; Shahrtash, S.M.</creator><creatorcontrib>Porkar, B. ; Vakilian, M. ; Iravani, R. ; Shahrtash, S.M.</creatorcontrib><description>Application of the network equivalent concept for external system representation in electromagnetic transient studies is well known. However, the challenge in application of an equivalent model, approximated by rational functions, is to guarantee passivity of the corresponding model. Therefore, there is a need to enforce passivity of the equivalent model. In this paper, the passivity enforcement problem is first formulated as a quadratic programming (QP) problem, and then solved based on an efficient implementation, using an infeasible-interior-point primal-dual method. An application of this method for passivity enforcement of a six-port admittance model (with large passivity violations) demonstrates its effectiveness and computational efficiency.</description><identifier>ISSN: 0885-8950</identifier><identifier>EISSN: 1558-0679</identifier><identifier>DOI: 10.1109/TPWRS.2008.922225</identifier><identifier>CODEN: ITPSEG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Admittance ; Approximation ; Computational efficiency ; Convex quadratic optimization problem ; Eigenvalues and eigenfunctions ; Electrical impedance ; Electromagnetic analysis ; Equivalence ; Frequency domain analysis ; Function approximation ; infeasible-interior-point primal-dual method ; Mathematical model ; network equivalent ; Optimization methods ; Passivity ; passivity enforcement ; Quadratic programming ; Rational functions ; Representations ; Transient analysis</subject><ispartof>IEEE transactions on power systems, 2008-08, Vol.23 (3), p.966-974</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c388t-70d72e0423cc3a57ac01a2fa43dba12acfbcbe77c6a46036a2b6c93064863673</citedby><cites>FETCH-LOGICAL-c388t-70d72e0423cc3a57ac01a2fa43dba12acfbcbe77c6a46036a2b6c93064863673</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4526214$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4526214$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Porkar, B.</creatorcontrib><creatorcontrib>Vakilian, M.</creatorcontrib><creatorcontrib>Iravani, R.</creatorcontrib><creatorcontrib>Shahrtash, S.M.</creatorcontrib><title>Passivity Enforcement Using an Infeasible-Interior-Point Primal-Dual Method</title><title>IEEE transactions on power systems</title><addtitle>TPWRS</addtitle><description>Application of the network equivalent concept for external system representation in electromagnetic transient studies is well known. However, the challenge in application of an equivalent model, approximated by rational functions, is to guarantee passivity of the corresponding model. Therefore, there is a need to enforce passivity of the equivalent model. In this paper, the passivity enforcement problem is first formulated as a quadratic programming (QP) problem, and then solved based on an efficient implementation, using an infeasible-interior-point primal-dual method. An application of this method for passivity enforcement of a six-port admittance model (with large passivity violations) demonstrates its effectiveness and computational efficiency.</description><subject>Admittance</subject><subject>Approximation</subject><subject>Computational efficiency</subject><subject>Convex quadratic optimization problem</subject><subject>Eigenvalues and eigenfunctions</subject><subject>Electrical impedance</subject><subject>Electromagnetic analysis</subject><subject>Equivalence</subject><subject>Frequency domain analysis</subject><subject>Function approximation</subject><subject>infeasible-interior-point primal-dual method</subject><subject>Mathematical model</subject><subject>network equivalent</subject><subject>Optimization methods</subject><subject>Passivity</subject><subject>passivity enforcement</subject><subject>Quadratic programming</subject><subject>Rational functions</subject><subject>Representations</subject><subject>Transient analysis</subject><issn>0885-8950</issn><issn>1558-0679</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp90b1OwzAUBWALgUQpPABiiRiAJeX63xlRKVBRRAVFjJHjOuAqTYqdIPXtcSliYMCLB3_nSr4HoWMMA4whu5xNX5-eBwRADTISD99BPcy5SkHIbBf1QCmeqozDPjoIYQEAIj700P1Uh-A-XbtORnXZeGOXtm6Tl-Dqt0TXybgurQ6uqGw6rlvrXePTaeMimXq31FV63ekqebDtezM_RHulroI9-rn7aHYzmg3v0snj7Xh4NUkNVapNJcwlscAINYZqLrUBrEmpGZ0XGhNtysIUVkojNBNAhSaFMBkFwZSgQtI-Ot-OXfnmo7OhzZcuGFtVurZNF_IsZhhwTqM8-1dSxphkEiK8-BdioJgCZJREevqHLprO1_G_uRJEES4xiwhvkfFNCN6W-WqzLb-Ok_JNX_l3X_mmr3zbV8ycbDPOWvvrGSeCxIlf8FGQLA</recordid><startdate>20080801</startdate><enddate>20080801</enddate><creator>Porkar, B.</creator><creator>Vakilian, M.</creator><creator>Iravani, R.</creator><creator>Shahrtash, S.M.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>F28</scope></search><sort><creationdate>20080801</creationdate><title>Passivity Enforcement Using an Infeasible-Interior-Point Primal-Dual Method</title><author>Porkar, B. ; Vakilian, M. ; Iravani, R. ; Shahrtash, S.M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c388t-70d72e0423cc3a57ac01a2fa43dba12acfbcbe77c6a46036a2b6c93064863673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Admittance</topic><topic>Approximation</topic><topic>Computational efficiency</topic><topic>Convex quadratic optimization problem</topic><topic>Eigenvalues and eigenfunctions</topic><topic>Electrical impedance</topic><topic>Electromagnetic analysis</topic><topic>Equivalence</topic><topic>Frequency domain analysis</topic><topic>Function approximation</topic><topic>infeasible-interior-point primal-dual method</topic><topic>Mathematical model</topic><topic>network equivalent</topic><topic>Optimization methods</topic><topic>Passivity</topic><topic>passivity enforcement</topic><topic>Quadratic programming</topic><topic>Rational functions</topic><topic>Representations</topic><topic>Transient analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Porkar, B.</creatorcontrib><creatorcontrib>Vakilian, M.</creatorcontrib><creatorcontrib>Iravani, R.</creatorcontrib><creatorcontrib>Shahrtash, S.M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><jtitle>IEEE transactions on power systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Porkar, B.</au><au>Vakilian, M.</au><au>Iravani, R.</au><au>Shahrtash, S.M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Passivity Enforcement Using an Infeasible-Interior-Point Primal-Dual Method</atitle><jtitle>IEEE transactions on power systems</jtitle><stitle>TPWRS</stitle><date>2008-08-01</date><risdate>2008</risdate><volume>23</volume><issue>3</issue><spage>966</spage><epage>974</epage><pages>966-974</pages><issn>0885-8950</issn><eissn>1558-0679</eissn><coden>ITPSEG</coden><abstract>Application of the network equivalent concept for external system representation in electromagnetic transient studies is well known. However, the challenge in application of an equivalent model, approximated by rational functions, is to guarantee passivity of the corresponding model. Therefore, there is a need to enforce passivity of the equivalent model. In this paper, the passivity enforcement problem is first formulated as a quadratic programming (QP) problem, and then solved based on an efficient implementation, using an infeasible-interior-point primal-dual method. An application of this method for passivity enforcement of a six-port admittance model (with large passivity violations) demonstrates its effectiveness and computational efficiency.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPWRS.2008.922225</doi><tpages>9</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0885-8950
ispartof IEEE transactions on power systems, 2008-08, Vol.23 (3), p.966-974
issn 0885-8950
1558-0679
language eng
recordid cdi_proquest_journals_862825714
source IEEE Electronic Library (IEL)
subjects Admittance
Approximation
Computational efficiency
Convex quadratic optimization problem
Eigenvalues and eigenfunctions
Electrical impedance
Electromagnetic analysis
Equivalence
Frequency domain analysis
Function approximation
infeasible-interior-point primal-dual method
Mathematical model
network equivalent
Optimization methods
Passivity
passivity enforcement
Quadratic programming
Rational functions
Representations
Transient analysis
title Passivity Enforcement Using an Infeasible-Interior-Point Primal-Dual Method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T01%3A04%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Passivity%20Enforcement%20Using%20an%20Infeasible-Interior-Point%20Primal-Dual%20Method&rft.jtitle=IEEE%20transactions%20on%20power%20systems&rft.au=Porkar,%20B.&rft.date=2008-08-01&rft.volume=23&rft.issue=3&rft.spage=966&rft.epage=974&rft.pages=966-974&rft.issn=0885-8950&rft.eissn=1558-0679&rft.coden=ITPSEG&rft_id=info:doi/10.1109/TPWRS.2008.922225&rft_dat=%3Cproquest_RIE%3E1031300932%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=862825714&rft_id=info:pmid/&rft_ieee_id=4526214&rfr_iscdi=true