Flow structures and hydrodynamic force during sediment entrainment

An experimental investigation of the role of coherent structures and their effect on hydrodynamic forces responsible for inception of sediment motion has been carried out using a laboratory flume. Two types of experiments, namely, movable and fixed ball, were conducted using spherical roughness elem...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water resources research 2011-01, Vol.47 (1), p.n/a
Hauptverfasser: Dwivedi, Ambuj, Melville, Bruce W., Shamseldin, Asaad Y., Guha, Tushar K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 1
container_start_page
container_title Water resources research
container_volume 47
creator Dwivedi, Ambuj
Melville, Bruce W.
Shamseldin, Asaad Y.
Guha, Tushar K.
description An experimental investigation of the role of coherent structures and their effect on hydrodynamic forces responsible for inception of sediment motion has been carried out using a laboratory flume. Two types of experiments, namely, movable and fixed ball, were conducted using spherical roughness element beds with particle image velocimetry used to measure the instantaneous flow velocity field. Movable ball experiments revealed the predominance of large sweep structures at the instant of entrainment for both shielded and exposed particles. Fixed ball experiments involving simultaneous measurements of hydrodynamic forces and velocity on the particle at entrainment conditions revealed the significance of impulse in initiating sediment entrainment such that an optimum combination of force and duration is required to produce the threshold impulse. Short‐duration lift forces of magnitudes greater than the submerged weight are thought to be responsible for partial lifting of the completely shielded particle. Quadrant analysis and probability distribution function plots of the dominant hydrodynamic force reveal the higher probability of occurrence of high‐magnitude force induced by sweep (Q4) events.
doi_str_mv 10.1029/2010WR009089
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_862824804</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2325723101</sourcerecordid><originalsourceid>FETCH-LOGICAL-a4101-d40d1b246bcc76f8529c773d864f0cfc0805523ec1b567b9064911e2fcc2dbb23</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqWw4wMi1gTGj9jxEipakKoilUcRGyvxA1LapNiJSv6eVEGIFYvRzOLcmTsXoVMMFxiIvCSAYTEHkJDKPTTAkrFYSEH30QCA0RhTKQ7RUQhLAMwSLgboeryqtlGofaPrxtsQZaWJ3lvjK9OW2brQkau8tpFpfFG-RcGaYm3LOurKZ0W5m4_RgctWwZ789CF6Gt88jm7j6f3kbnQ1jTOGAceGgcE5YTzXWnCXJkRqIahJOXOgnYYUkoRQq3HeOcslcCYxtsRpTUyeEzpEZ_3eja8-GxtqtawaX3YnVcpJSlja_ThE5z2kfRWCt05tfLHOfKswqF1I6m9IHU57fFusbPsvqxbz0RwTTnCnintVEWr79avK_IfigopELWYT9TB7eZ08M6E4_QbmyHer</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>862824804</pqid></control><display><type>article</type><title>Flow structures and hydrodynamic force during sediment entrainment</title><source>Wiley Online Library</source><source>Wiley Online Library AGU Free Content</source><source>EZB Electronic Journals Library</source><creator>Dwivedi, Ambuj ; Melville, Bruce W. ; Shamseldin, Asaad Y. ; Guha, Tushar K.</creator><creatorcontrib>Dwivedi, Ambuj ; Melville, Bruce W. ; Shamseldin, Asaad Y. ; Guha, Tushar K.</creatorcontrib><description>An experimental investigation of the role of coherent structures and their effect on hydrodynamic forces responsible for inception of sediment motion has been carried out using a laboratory flume. Two types of experiments, namely, movable and fixed ball, were conducted using spherical roughness element beds with particle image velocimetry used to measure the instantaneous flow velocity field. Movable ball experiments revealed the predominance of large sweep structures at the instant of entrainment for both shielded and exposed particles. Fixed ball experiments involving simultaneous measurements of hydrodynamic forces and velocity on the particle at entrainment conditions revealed the significance of impulse in initiating sediment entrainment such that an optimum combination of force and duration is required to produce the threshold impulse. Short‐duration lift forces of magnitudes greater than the submerged weight are thought to be responsible for partial lifting of the completely shielded particle. Quadrant analysis and probability distribution function plots of the dominant hydrodynamic force reveal the higher probability of occurrence of high‐magnitude force induced by sweep (Q4) events.</description><identifier>ISSN: 0043-1397</identifier><identifier>EISSN: 1944-7973</identifier><identifier>DOI: 10.1029/2010WR009089</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>Aluminum ; drag ; Entrainment ; Experiments ; flow structure ; Flow velocity ; Geology ; hydrodynamic forces ; Hydrology ; Laboratories ; lift ; Load ; particle entrainment ; Probability distribution ; protrusions ; Sediment transport ; Sediments ; Sensors ; Shear stress ; Spheres ; Strain gauges ; Stream flow ; Table tennis</subject><ispartof>Water resources research, 2011-01, Vol.47 (1), p.n/a</ispartof><rights>Copyright 2011 by the American Geophysical Union.</rights><rights>Copyright 2011 by American Geophysical Union</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a4101-d40d1b246bcc76f8529c773d864f0cfc0805523ec1b567b9064911e2fcc2dbb23</citedby><cites>FETCH-LOGICAL-a4101-d40d1b246bcc76f8529c773d864f0cfc0805523ec1b567b9064911e2fcc2dbb23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2010WR009089$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2010WR009089$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,11493,27901,27902,45550,45551,46443,46867</link.rule.ids></links><search><creatorcontrib>Dwivedi, Ambuj</creatorcontrib><creatorcontrib>Melville, Bruce W.</creatorcontrib><creatorcontrib>Shamseldin, Asaad Y.</creatorcontrib><creatorcontrib>Guha, Tushar K.</creatorcontrib><title>Flow structures and hydrodynamic force during sediment entrainment</title><title>Water resources research</title><addtitle>Water Resour. Res</addtitle><description>An experimental investigation of the role of coherent structures and their effect on hydrodynamic forces responsible for inception of sediment motion has been carried out using a laboratory flume. Two types of experiments, namely, movable and fixed ball, were conducted using spherical roughness element beds with particle image velocimetry used to measure the instantaneous flow velocity field. Movable ball experiments revealed the predominance of large sweep structures at the instant of entrainment for both shielded and exposed particles. Fixed ball experiments involving simultaneous measurements of hydrodynamic forces and velocity on the particle at entrainment conditions revealed the significance of impulse in initiating sediment entrainment such that an optimum combination of force and duration is required to produce the threshold impulse. Short‐duration lift forces of magnitudes greater than the submerged weight are thought to be responsible for partial lifting of the completely shielded particle. Quadrant analysis and probability distribution function plots of the dominant hydrodynamic force reveal the higher probability of occurrence of high‐magnitude force induced by sweep (Q4) events.</description><subject>Aluminum</subject><subject>drag</subject><subject>Entrainment</subject><subject>Experiments</subject><subject>flow structure</subject><subject>Flow velocity</subject><subject>Geology</subject><subject>hydrodynamic forces</subject><subject>Hydrology</subject><subject>Laboratories</subject><subject>lift</subject><subject>Load</subject><subject>particle entrainment</subject><subject>Probability distribution</subject><subject>protrusions</subject><subject>Sediment transport</subject><subject>Sediments</subject><subject>Sensors</subject><subject>Shear stress</subject><subject>Spheres</subject><subject>Strain gauges</subject><subject>Stream flow</subject><subject>Table tennis</subject><issn>0043-1397</issn><issn>1944-7973</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kMtOwzAQRS0EEqWw4wMi1gTGj9jxEipakKoilUcRGyvxA1LapNiJSv6eVEGIFYvRzOLcmTsXoVMMFxiIvCSAYTEHkJDKPTTAkrFYSEH30QCA0RhTKQ7RUQhLAMwSLgboeryqtlGofaPrxtsQZaWJ3lvjK9OW2brQkau8tpFpfFG-RcGaYm3LOurKZ0W5m4_RgctWwZ789CF6Gt88jm7j6f3kbnQ1jTOGAceGgcE5YTzXWnCXJkRqIahJOXOgnYYUkoRQq3HeOcslcCYxtsRpTUyeEzpEZ_3eja8-GxtqtawaX3YnVcpJSlja_ThE5z2kfRWCt05tfLHOfKswqF1I6m9IHU57fFusbPsvqxbz0RwTTnCnintVEWr79avK_IfigopELWYT9TB7eZ08M6E4_QbmyHer</recordid><startdate>201101</startdate><enddate>201101</enddate><creator>Dwivedi, Ambuj</creator><creator>Melville, Bruce W.</creator><creator>Shamseldin, Asaad Y.</creator><creator>Guha, Tushar K.</creator><general>Blackwell Publishing Ltd</general><general>John Wiley &amp; Sons, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7QL</scope><scope>7T7</scope><scope>7TG</scope><scope>7U9</scope><scope>7UA</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>H96</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>KL.</scope><scope>KR7</scope><scope>L.-</scope><scope>L.G</scope><scope>L6V</scope><scope>M0C</scope><scope>M2O</scope><scope>M7N</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope></search><sort><creationdate>201101</creationdate><title>Flow structures and hydrodynamic force during sediment entrainment</title><author>Dwivedi, Ambuj ; Melville, Bruce W. ; Shamseldin, Asaad Y. ; Guha, Tushar K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a4101-d40d1b246bcc76f8529c773d864f0cfc0805523ec1b567b9064911e2fcc2dbb23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Aluminum</topic><topic>drag</topic><topic>Entrainment</topic><topic>Experiments</topic><topic>flow structure</topic><topic>Flow velocity</topic><topic>Geology</topic><topic>hydrodynamic forces</topic><topic>Hydrology</topic><topic>Laboratories</topic><topic>lift</topic><topic>Load</topic><topic>particle entrainment</topic><topic>Probability distribution</topic><topic>protrusions</topic><topic>Sediment transport</topic><topic>Sediments</topic><topic>Sensors</topic><topic>Shear stress</topic><topic>Spheres</topic><topic>Strain gauges</topic><topic>Stream flow</topic><topic>Table tennis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dwivedi, Ambuj</creatorcontrib><creatorcontrib>Melville, Bruce W.</creatorcontrib><creatorcontrib>Shamseldin, Asaad Y.</creatorcontrib><creatorcontrib>Guha, Tushar K.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM global</collection><collection>Research Library (ProQuest)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>ProQuest Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Water resources research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dwivedi, Ambuj</au><au>Melville, Bruce W.</au><au>Shamseldin, Asaad Y.</au><au>Guha, Tushar K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Flow structures and hydrodynamic force during sediment entrainment</atitle><jtitle>Water resources research</jtitle><addtitle>Water Resour. Res</addtitle><date>2011-01</date><risdate>2011</risdate><volume>47</volume><issue>1</issue><epage>n/a</epage><issn>0043-1397</issn><eissn>1944-7973</eissn><abstract>An experimental investigation of the role of coherent structures and their effect on hydrodynamic forces responsible for inception of sediment motion has been carried out using a laboratory flume. Two types of experiments, namely, movable and fixed ball, were conducted using spherical roughness element beds with particle image velocimetry used to measure the instantaneous flow velocity field. Movable ball experiments revealed the predominance of large sweep structures at the instant of entrainment for both shielded and exposed particles. Fixed ball experiments involving simultaneous measurements of hydrodynamic forces and velocity on the particle at entrainment conditions revealed the significance of impulse in initiating sediment entrainment such that an optimum combination of force and duration is required to produce the threshold impulse. Short‐duration lift forces of magnitudes greater than the submerged weight are thought to be responsible for partial lifting of the completely shielded particle. Quadrant analysis and probability distribution function plots of the dominant hydrodynamic force reveal the higher probability of occurrence of high‐magnitude force induced by sweep (Q4) events.</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2010WR009089</doi><tpages>18</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0043-1397
ispartof Water resources research, 2011-01, Vol.47 (1), p.n/a
issn 0043-1397
1944-7973
language eng
recordid cdi_proquest_journals_862824804
source Wiley Online Library; Wiley Online Library AGU Free Content; EZB Electronic Journals Library
subjects Aluminum
drag
Entrainment
Experiments
flow structure
Flow velocity
Geology
hydrodynamic forces
Hydrology
Laboratories
lift
Load
particle entrainment
Probability distribution
protrusions
Sediment transport
Sediments
Sensors
Shear stress
Spheres
Strain gauges
Stream flow
Table tennis
title Flow structures and hydrodynamic force during sediment entrainment
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T19%3A46%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Flow%20structures%20and%20hydrodynamic%20force%20during%20sediment%20entrainment&rft.jtitle=Water%20resources%20research&rft.au=Dwivedi,%20Ambuj&rft.date=2011-01&rft.volume=47&rft.issue=1&rft.epage=n/a&rft.issn=0043-1397&rft.eissn=1944-7973&rft_id=info:doi/10.1029/2010WR009089&rft_dat=%3Cproquest_cross%3E2325723101%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=862824804&rft_id=info:pmid/&rfr_iscdi=true