"Data Clustering Approach to Industrial Process Monitoring, Fault Detection and Isolation"

In this paper proposes different conventional and fuzzy based clustering techniques for fault detection and isolation in process plant monitoring. Process plant monitoring is very important aspect to improve productiveness and efficiency of the product and plant. This paper takes a case study of pla...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of computer applications 2011-03, Vol.17 (2), p.36-40
Hauptverfasser: Jyoti, Kiran, Singh, Satyaveer
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 40
container_issue 2
container_start_page 36
container_title International journal of computer applications
container_volume 17
creator Jyoti, Kiran
Singh, Satyaveer
description In this paper proposes different conventional and fuzzy based clustering techniques for fault detection and isolation in process plant monitoring. Process plant monitoring is very important aspect to improve productiveness and efficiency of the product and plant. This paper takes a case study of plant data and implements K means algorithm and fuzzy C means algorithm to cluster the relevant data. This paper also discusses the comparison for K means algorithm and fuzzy C means algorithm.
doi_str_mv 10.5120/2189-2777
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_862716201</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2324891131</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1367-1852a28c3b64e96d4cf53cd04dfc81dce2096e2d4f6bced4826aa233db4baf5c3</originalsourceid><addsrcrecordid>eNpNkDtPwzAQgC0EEhV04B9Y3ZAI-BXbGauWQqUiGGBhsS62A6lCXGxn4N-TqAzccg99ujt9CF1RcltSRu4Y1VXBlFInaEYqVRZaa3X6rz5H85T2ZAxeMVmJGXpfrCEDXnVDyj62_QdeHg4xgP3EOeBt78Z5bKHDLzFYnxJ-Cn2bw0Te4A0MXcZrn73Nbegx9A5vU-hg6haX6KyBLvn5X75Ab5v719VjsXt-2K6Wu8JSLlVBdcmAactrKXwlnbBNya0jwjVWU2c9I5X0zIlG1tY7oZkEYJy7WtTQlJZfoMVx7_j39-BTNvswxH48abRkikpG6AhdHyEbQ0rRN-YQ2y-IP4YSM8kzkzwzyeO_gi5hJw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>862716201</pqid></control><display><type>article</type><title>"Data Clustering Approach to Industrial Process Monitoring, Fault Detection and Isolation"</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Jyoti, Kiran ; Singh, Satyaveer</creator><creatorcontrib>Jyoti, Kiran ; Singh, Satyaveer</creatorcontrib><description>In this paper proposes different conventional and fuzzy based clustering techniques for fault detection and isolation in process plant monitoring. Process plant monitoring is very important aspect to improve productiveness and efficiency of the product and plant. This paper takes a case study of plant data and implements K means algorithm and fuzzy C means algorithm to cluster the relevant data. This paper also discusses the comparison for K means algorithm and fuzzy C means algorithm.</description><identifier>ISSN: 0975-8887</identifier><identifier>EISSN: 0975-8887</identifier><identifier>DOI: 10.5120/2189-2777</identifier><language>eng</language><publisher>New York: Foundation of Computer Science</publisher><ispartof>International journal of computer applications, 2011-03, Vol.17 (2), p.36-40</ispartof><rights>Copyright Foundation of Computer Science 2011</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1367-1852a28c3b64e96d4cf53cd04dfc81dce2096e2d4f6bced4826aa233db4baf5c3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Jyoti, Kiran</creatorcontrib><creatorcontrib>Singh, Satyaveer</creatorcontrib><title>"Data Clustering Approach to Industrial Process Monitoring, Fault Detection and Isolation"</title><title>International journal of computer applications</title><description>In this paper proposes different conventional and fuzzy based clustering techniques for fault detection and isolation in process plant monitoring. Process plant monitoring is very important aspect to improve productiveness and efficiency of the product and plant. This paper takes a case study of plant data and implements K means algorithm and fuzzy C means algorithm to cluster the relevant data. This paper also discusses the comparison for K means algorithm and fuzzy C means algorithm.</description><issn>0975-8887</issn><issn>0975-8887</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNpNkDtPwzAQgC0EEhV04B9Y3ZAI-BXbGauWQqUiGGBhsS62A6lCXGxn4N-TqAzccg99ujt9CF1RcltSRu4Y1VXBlFInaEYqVRZaa3X6rz5H85T2ZAxeMVmJGXpfrCEDXnVDyj62_QdeHg4xgP3EOeBt78Z5bKHDLzFYnxJ-Cn2bw0Te4A0MXcZrn73Nbegx9A5vU-hg6haX6KyBLvn5X75Ab5v719VjsXt-2K6Wu8JSLlVBdcmAactrKXwlnbBNya0jwjVWU2c9I5X0zIlG1tY7oZkEYJy7WtTQlJZfoMVx7_j39-BTNvswxH48abRkikpG6AhdHyEbQ0rRN-YQ2y-IP4YSM8kzkzwzyeO_gi5hJw</recordid><startdate>20110331</startdate><enddate>20110331</enddate><creator>Jyoti, Kiran</creator><creator>Singh, Satyaveer</creator><general>Foundation of Computer Science</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20110331</creationdate><title>"Data Clustering Approach to Industrial Process Monitoring, Fault Detection and Isolation"</title><author>Jyoti, Kiran ; Singh, Satyaveer</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1367-1852a28c3b64e96d4cf53cd04dfc81dce2096e2d4f6bced4826aa233db4baf5c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Jyoti, Kiran</creatorcontrib><creatorcontrib>Singh, Satyaveer</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of computer applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jyoti, Kiran</au><au>Singh, Satyaveer</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>"Data Clustering Approach to Industrial Process Monitoring, Fault Detection and Isolation"</atitle><jtitle>International journal of computer applications</jtitle><date>2011-03-31</date><risdate>2011</risdate><volume>17</volume><issue>2</issue><spage>36</spage><epage>40</epage><pages>36-40</pages><issn>0975-8887</issn><eissn>0975-8887</eissn><abstract>In this paper proposes different conventional and fuzzy based clustering techniques for fault detection and isolation in process plant monitoring. Process plant monitoring is very important aspect to improve productiveness and efficiency of the product and plant. This paper takes a case study of plant data and implements K means algorithm and fuzzy C means algorithm to cluster the relevant data. This paper also discusses the comparison for K means algorithm and fuzzy C means algorithm.</abstract><cop>New York</cop><pub>Foundation of Computer Science</pub><doi>10.5120/2189-2777</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0975-8887
ispartof International journal of computer applications, 2011-03, Vol.17 (2), p.36-40
issn 0975-8887
0975-8887
language eng
recordid cdi_proquest_journals_862716201
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
title "Data Clustering Approach to Industrial Process Monitoring, Fault Detection and Isolation"
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T19%3A01%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=%22Data%20Clustering%20Approach%20to%20Industrial%20Process%20Monitoring,%20Fault%20Detection%20and%20Isolation%22&rft.jtitle=International%20journal%20of%20computer%20applications&rft.au=Jyoti,%20Kiran&rft.date=2011-03-31&rft.volume=17&rft.issue=2&rft.spage=36&rft.epage=40&rft.pages=36-40&rft.issn=0975-8887&rft.eissn=0975-8887&rft_id=info:doi/10.5120/2189-2777&rft_dat=%3Cproquest_cross%3E2324891131%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=862716201&rft_id=info:pmid/&rfr_iscdi=true