"Data Clustering Approach to Industrial Process Monitoring, Fault Detection and Isolation"
In this paper proposes different conventional and fuzzy based clustering techniques for fault detection and isolation in process plant monitoring. Process plant monitoring is very important aspect to improve productiveness and efficiency of the product and plant. This paper takes a case study of pla...
Gespeichert in:
Veröffentlicht in: | International journal of computer applications 2011-03, Vol.17 (2), p.36-40 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 40 |
---|---|
container_issue | 2 |
container_start_page | 36 |
container_title | International journal of computer applications |
container_volume | 17 |
creator | Jyoti, Kiran Singh, Satyaveer |
description | In this paper proposes different conventional and fuzzy based clustering techniques for fault detection and isolation in process plant monitoring. Process plant monitoring is very important aspect to improve productiveness and efficiency of the product and plant. This paper takes a case study of plant data and implements K means algorithm and fuzzy C means algorithm to cluster the relevant data. This paper also discusses the comparison for K means algorithm and fuzzy C means algorithm. |
doi_str_mv | 10.5120/2189-2777 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_862716201</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2324891131</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1367-1852a28c3b64e96d4cf53cd04dfc81dce2096e2d4f6bced4826aa233db4baf5c3</originalsourceid><addsrcrecordid>eNpNkDtPwzAQgC0EEhV04B9Y3ZAI-BXbGauWQqUiGGBhsS62A6lCXGxn4N-TqAzccg99ujt9CF1RcltSRu4Y1VXBlFInaEYqVRZaa3X6rz5H85T2ZAxeMVmJGXpfrCEDXnVDyj62_QdeHg4xgP3EOeBt78Z5bKHDLzFYnxJ-Cn2bw0Te4A0MXcZrn73Nbegx9A5vU-hg6haX6KyBLvn5X75Ab5v719VjsXt-2K6Wu8JSLlVBdcmAactrKXwlnbBNya0jwjVWU2c9I5X0zIlG1tY7oZkEYJy7WtTQlJZfoMVx7_j39-BTNvswxH48abRkikpG6AhdHyEbQ0rRN-YQ2y-IP4YSM8kzkzwzyeO_gi5hJw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>862716201</pqid></control><display><type>article</type><title>"Data Clustering Approach to Industrial Process Monitoring, Fault Detection and Isolation"</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Jyoti, Kiran ; Singh, Satyaveer</creator><creatorcontrib>Jyoti, Kiran ; Singh, Satyaveer</creatorcontrib><description>In this paper proposes different conventional and fuzzy based clustering techniques for fault detection and isolation in process plant monitoring. Process plant monitoring is very important aspect to improve productiveness and efficiency of the product and plant. This paper takes a case study of plant data and implements K means algorithm and fuzzy C means algorithm to cluster the relevant data. This paper also discusses the comparison for K means algorithm and fuzzy C means algorithm.</description><identifier>ISSN: 0975-8887</identifier><identifier>EISSN: 0975-8887</identifier><identifier>DOI: 10.5120/2189-2777</identifier><language>eng</language><publisher>New York: Foundation of Computer Science</publisher><ispartof>International journal of computer applications, 2011-03, Vol.17 (2), p.36-40</ispartof><rights>Copyright Foundation of Computer Science 2011</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1367-1852a28c3b64e96d4cf53cd04dfc81dce2096e2d4f6bced4826aa233db4baf5c3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Jyoti, Kiran</creatorcontrib><creatorcontrib>Singh, Satyaveer</creatorcontrib><title>"Data Clustering Approach to Industrial Process Monitoring, Fault Detection and Isolation"</title><title>International journal of computer applications</title><description>In this paper proposes different conventional and fuzzy based clustering techniques for fault detection and isolation in process plant monitoring. Process plant monitoring is very important aspect to improve productiveness and efficiency of the product and plant. This paper takes a case study of plant data and implements K means algorithm and fuzzy C means algorithm to cluster the relevant data. This paper also discusses the comparison for K means algorithm and fuzzy C means algorithm.</description><issn>0975-8887</issn><issn>0975-8887</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNpNkDtPwzAQgC0EEhV04B9Y3ZAI-BXbGauWQqUiGGBhsS62A6lCXGxn4N-TqAzccg99ujt9CF1RcltSRu4Y1VXBlFInaEYqVRZaa3X6rz5H85T2ZAxeMVmJGXpfrCEDXnVDyj62_QdeHg4xgP3EOeBt78Z5bKHDLzFYnxJ-Cn2bw0Te4A0MXcZrn73Nbegx9A5vU-hg6haX6KyBLvn5X75Ab5v719VjsXt-2K6Wu8JSLlVBdcmAactrKXwlnbBNya0jwjVWU2c9I5X0zIlG1tY7oZkEYJy7WtTQlJZfoMVx7_j39-BTNvswxH48abRkikpG6AhdHyEbQ0rRN-YQ2y-IP4YSM8kzkzwzyeO_gi5hJw</recordid><startdate>20110331</startdate><enddate>20110331</enddate><creator>Jyoti, Kiran</creator><creator>Singh, Satyaveer</creator><general>Foundation of Computer Science</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20110331</creationdate><title>"Data Clustering Approach to Industrial Process Monitoring, Fault Detection and Isolation"</title><author>Jyoti, Kiran ; Singh, Satyaveer</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1367-1852a28c3b64e96d4cf53cd04dfc81dce2096e2d4f6bced4826aa233db4baf5c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Jyoti, Kiran</creatorcontrib><creatorcontrib>Singh, Satyaveer</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of computer applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jyoti, Kiran</au><au>Singh, Satyaveer</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>"Data Clustering Approach to Industrial Process Monitoring, Fault Detection and Isolation"</atitle><jtitle>International journal of computer applications</jtitle><date>2011-03-31</date><risdate>2011</risdate><volume>17</volume><issue>2</issue><spage>36</spage><epage>40</epage><pages>36-40</pages><issn>0975-8887</issn><eissn>0975-8887</eissn><abstract>In this paper proposes different conventional and fuzzy based clustering techniques for fault detection and isolation in process plant monitoring. Process plant monitoring is very important aspect to improve productiveness and efficiency of the product and plant. This paper takes a case study of plant data and implements K means algorithm and fuzzy C means algorithm to cluster the relevant data. This paper also discusses the comparison for K means algorithm and fuzzy C means algorithm.</abstract><cop>New York</cop><pub>Foundation of Computer Science</pub><doi>10.5120/2189-2777</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0975-8887 |
ispartof | International journal of computer applications, 2011-03, Vol.17 (2), p.36-40 |
issn | 0975-8887 0975-8887 |
language | eng |
recordid | cdi_proquest_journals_862716201 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
title | "Data Clustering Approach to Industrial Process Monitoring, Fault Detection and Isolation" |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T19%3A01%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=%22Data%20Clustering%20Approach%20to%20Industrial%20Process%20Monitoring,%20Fault%20Detection%20and%20Isolation%22&rft.jtitle=International%20journal%20of%20computer%20applications&rft.au=Jyoti,%20Kiran&rft.date=2011-03-31&rft.volume=17&rft.issue=2&rft.spage=36&rft.epage=40&rft.pages=36-40&rft.issn=0975-8887&rft.eissn=0975-8887&rft_id=info:doi/10.5120/2189-2777&rft_dat=%3Cproquest_cross%3E2324891131%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=862716201&rft_id=info:pmid/&rfr_iscdi=true |