Precompensation Techniques to Suppress the Thermally Induced Wavelength Drift in Tunable DBR Lasers

Wavelength drift caused by thermal transients is a major problem in optical routers which use semiconductor tunable lasers for packet switching. Wavelength drift is induced by the temperature variations in laser sections caused by switching of the tuning currents. A thermal model is used to analyze...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of quantum electronics 2008-10, Vol.44 (10), p.958-965
Hauptverfasser: Darvish, G., Moravvej-Farshi, M.K., Zarifkar, A., Saghafi, K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 965
container_issue 10
container_start_page 958
container_title IEEE journal of quantum electronics
container_volume 44
creator Darvish, G.
Moravvej-Farshi, M.K.
Zarifkar, A.
Saghafi, K.
description Wavelength drift caused by thermal transients is a major problem in optical routers which use semiconductor tunable lasers for packet switching. Wavelength drift is induced by the temperature variations in laser sections caused by switching of the tuning currents. A thermal model is used to analyze the optical frequency drifts due to the thermal characteristics of the laser chip and its mount. We investigate the impact of thermal effects on switching behavior of a three-section distributed Bragg reflector laser and show numerically that the wavelength drift can be counteracted by using precompensation of passive section currents. Results from numerical simulation show that the wavelength drifts can be suppressed by more than 80%.
doi_str_mv 10.1109/JQE.2008.2001303
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_862210137</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4633719</ieee_id><sourcerecordid>34464951</sourcerecordid><originalsourceid>FETCH-LOGICAL-c415t-21676d736a7a342bbf9c776102b26a8e177bd0606dd06125864ad975bc0d29033</originalsourceid><addsrcrecordid>eNqFkctv1DAQhy0EEkvhjsTFQgJOKR7b8eMIbYGilXgt4mg5zoRNlXWCnSD1v8fRrnrgAJfx65ufNfoIeQrsHIDZ1x-_XJ1zxsxaQDBxj2ygrk0FGsR9simXprJg9UPyKOebcpTSsA0JnxOG8TBhzH7ux0h3GPax_7VgpvNIvy3TlDCX_R7pbo_p4Ifhll7HdgnY0h_-Nw4Yf857epn6bqZ9CViibwakl2-_0q3PmPJj8qDzQ8Ynp_WMfH93tbv4UG0_vb--eLOtgoR6rjgorVotlNdeSN40nQ1aK2C84cobBK2blimm2lKB10ZJ31pdN4G13DIhzsirY-6UxnWA2R36HHAYfMRxya4wSpaA_5NG10wqzmwhX_6TFFIqaWso4PO_wJtxSbHM64ziHIoUXSB2hEIac07YuSn1B59uHTC3anRFo1s1upPG0vLilOtz8EOXfAx9vuvjTINUZv3_2ZHrEfHuWSohNFjxB7rMo2o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>862210137</pqid></control><display><type>article</type><title>Precompensation Techniques to Suppress the Thermally Induced Wavelength Drift in Tunable DBR Lasers</title><source>IEEE Electronic Library (IEL)</source><creator>Darvish, G. ; Moravvej-Farshi, M.K. ; Zarifkar, A. ; Saghafi, K.</creator><creatorcontrib>Darvish, G. ; Moravvej-Farshi, M.K. ; Zarifkar, A. ; Saghafi, K.</creatorcontrib><description>Wavelength drift caused by thermal transients is a major problem in optical routers which use semiconductor tunable lasers for packet switching. Wavelength drift is induced by the temperature variations in laser sections caused by switching of the tuning currents. A thermal model is used to analyze the optical frequency drifts due to the thermal characteristics of the laser chip and its mount. We investigate the impact of thermal effects on switching behavior of a three-section distributed Bragg reflector laser and show numerically that the wavelength drift can be counteracted by using precompensation of passive section currents. Results from numerical simulation show that the wavelength drifts can be suppressed by more than 80%.</description><identifier>ISSN: 0018-9197</identifier><identifier>EISSN: 1558-1713</identifier><identifier>DOI: 10.1109/JQE.2008.2001303</identifier><identifier>CODEN: IEJQA7</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Bragg reflectors ; Distributed Bragg reflector (DBR) lasers ; Distributed Bragg reflectors ; Drift ; Exact sciences and technology ; Frequency ; Fundamental areas of phenomenology (including applications) ; Laser modes ; Laser tuning ; Lasers ; Mathematical models ; Optical packet switching ; Optical telecommunications ; Optical tuning ; Optics ; Packet switching ; Physics ; precompensation technique ; Semiconductor lasers ; Semiconductor lasers; laser diodes ; Semiconductors ; Switching ; Telecommunications ; Telecommunications and information theory ; Temperature ; thermal effects ; Tunable circuits and devices ; tunable semiconductor laser ; Tuning ; wavelength drift ; wavelength-division multiplexing (WDM) ; Wavelengths</subject><ispartof>IEEE journal of quantum electronics, 2008-10, Vol.44 (10), p.958-965</ispartof><rights>2008 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c415t-21676d736a7a342bbf9c776102b26a8e177bd0606dd06125864ad975bc0d29033</citedby><cites>FETCH-LOGICAL-c415t-21676d736a7a342bbf9c776102b26a8e177bd0606dd06125864ad975bc0d29033</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4633719$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,778,782,794,27913,27914,54747</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4633719$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20714681$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Darvish, G.</creatorcontrib><creatorcontrib>Moravvej-Farshi, M.K.</creatorcontrib><creatorcontrib>Zarifkar, A.</creatorcontrib><creatorcontrib>Saghafi, K.</creatorcontrib><title>Precompensation Techniques to Suppress the Thermally Induced Wavelength Drift in Tunable DBR Lasers</title><title>IEEE journal of quantum electronics</title><addtitle>JQE</addtitle><description>Wavelength drift caused by thermal transients is a major problem in optical routers which use semiconductor tunable lasers for packet switching. Wavelength drift is induced by the temperature variations in laser sections caused by switching of the tuning currents. A thermal model is used to analyze the optical frequency drifts due to the thermal characteristics of the laser chip and its mount. We investigate the impact of thermal effects on switching behavior of a three-section distributed Bragg reflector laser and show numerically that the wavelength drift can be counteracted by using precompensation of passive section currents. Results from numerical simulation show that the wavelength drifts can be suppressed by more than 80%.</description><subject>Applied sciences</subject><subject>Bragg reflectors</subject><subject>Distributed Bragg reflector (DBR) lasers</subject><subject>Distributed Bragg reflectors</subject><subject>Drift</subject><subject>Exact sciences and technology</subject><subject>Frequency</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Laser modes</subject><subject>Laser tuning</subject><subject>Lasers</subject><subject>Mathematical models</subject><subject>Optical packet switching</subject><subject>Optical telecommunications</subject><subject>Optical tuning</subject><subject>Optics</subject><subject>Packet switching</subject><subject>Physics</subject><subject>precompensation technique</subject><subject>Semiconductor lasers</subject><subject>Semiconductor lasers; laser diodes</subject><subject>Semiconductors</subject><subject>Switching</subject><subject>Telecommunications</subject><subject>Telecommunications and information theory</subject><subject>Temperature</subject><subject>thermal effects</subject><subject>Tunable circuits and devices</subject><subject>tunable semiconductor laser</subject><subject>Tuning</subject><subject>wavelength drift</subject><subject>wavelength-division multiplexing (WDM)</subject><subject>Wavelengths</subject><issn>0018-9197</issn><issn>1558-1713</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqFkctv1DAQhy0EEkvhjsTFQgJOKR7b8eMIbYGilXgt4mg5zoRNlXWCnSD1v8fRrnrgAJfx65ufNfoIeQrsHIDZ1x-_XJ1zxsxaQDBxj2ygrk0FGsR9simXprJg9UPyKOebcpTSsA0JnxOG8TBhzH7ux0h3GPax_7VgpvNIvy3TlDCX_R7pbo_p4Ifhll7HdgnY0h_-Nw4Yf857epn6bqZ9CViibwakl2-_0q3PmPJj8qDzQ8Ynp_WMfH93tbv4UG0_vb--eLOtgoR6rjgorVotlNdeSN40nQ1aK2C84cobBK2blimm2lKB10ZJ31pdN4G13DIhzsirY-6UxnWA2R36HHAYfMRxya4wSpaA_5NG10wqzmwhX_6TFFIqaWso4PO_wJtxSbHM64ziHIoUXSB2hEIac07YuSn1B59uHTC3anRFo1s1upPG0vLilOtz8EOXfAx9vuvjTINUZv3_2ZHrEfHuWSohNFjxB7rMo2o</recordid><startdate>20081001</startdate><enddate>20081001</enddate><creator>Darvish, G.</creator><creator>Moravvej-Farshi, M.K.</creator><creator>Zarifkar, A.</creator><creator>Saghafi, K.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20081001</creationdate><title>Precompensation Techniques to Suppress the Thermally Induced Wavelength Drift in Tunable DBR Lasers</title><author>Darvish, G. ; Moravvej-Farshi, M.K. ; Zarifkar, A. ; Saghafi, K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c415t-21676d736a7a342bbf9c776102b26a8e177bd0606dd06125864ad975bc0d29033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Applied sciences</topic><topic>Bragg reflectors</topic><topic>Distributed Bragg reflector (DBR) lasers</topic><topic>Distributed Bragg reflectors</topic><topic>Drift</topic><topic>Exact sciences and technology</topic><topic>Frequency</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Laser modes</topic><topic>Laser tuning</topic><topic>Lasers</topic><topic>Mathematical models</topic><topic>Optical packet switching</topic><topic>Optical telecommunications</topic><topic>Optical tuning</topic><topic>Optics</topic><topic>Packet switching</topic><topic>Physics</topic><topic>precompensation technique</topic><topic>Semiconductor lasers</topic><topic>Semiconductor lasers; laser diodes</topic><topic>Semiconductors</topic><topic>Switching</topic><topic>Telecommunications</topic><topic>Telecommunications and information theory</topic><topic>Temperature</topic><topic>thermal effects</topic><topic>Tunable circuits and devices</topic><topic>tunable semiconductor laser</topic><topic>Tuning</topic><topic>wavelength drift</topic><topic>wavelength-division multiplexing (WDM)</topic><topic>Wavelengths</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Darvish, G.</creatorcontrib><creatorcontrib>Moravvej-Farshi, M.K.</creatorcontrib><creatorcontrib>Zarifkar, A.</creatorcontrib><creatorcontrib>Saghafi, K.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE journal of quantum electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Darvish, G.</au><au>Moravvej-Farshi, M.K.</au><au>Zarifkar, A.</au><au>Saghafi, K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Precompensation Techniques to Suppress the Thermally Induced Wavelength Drift in Tunable DBR Lasers</atitle><jtitle>IEEE journal of quantum electronics</jtitle><stitle>JQE</stitle><date>2008-10-01</date><risdate>2008</risdate><volume>44</volume><issue>10</issue><spage>958</spage><epage>965</epage><pages>958-965</pages><issn>0018-9197</issn><eissn>1558-1713</eissn><coden>IEJQA7</coden><abstract>Wavelength drift caused by thermal transients is a major problem in optical routers which use semiconductor tunable lasers for packet switching. Wavelength drift is induced by the temperature variations in laser sections caused by switching of the tuning currents. A thermal model is used to analyze the optical frequency drifts due to the thermal characteristics of the laser chip and its mount. We investigate the impact of thermal effects on switching behavior of a three-section distributed Bragg reflector laser and show numerically that the wavelength drift can be counteracted by using precompensation of passive section currents. Results from numerical simulation show that the wavelength drifts can be suppressed by more than 80%.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/JQE.2008.2001303</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9197
ispartof IEEE journal of quantum electronics, 2008-10, Vol.44 (10), p.958-965
issn 0018-9197
1558-1713
language eng
recordid cdi_proquest_journals_862210137
source IEEE Electronic Library (IEL)
subjects Applied sciences
Bragg reflectors
Distributed Bragg reflector (DBR) lasers
Distributed Bragg reflectors
Drift
Exact sciences and technology
Frequency
Fundamental areas of phenomenology (including applications)
Laser modes
Laser tuning
Lasers
Mathematical models
Optical packet switching
Optical telecommunications
Optical tuning
Optics
Packet switching
Physics
precompensation technique
Semiconductor lasers
Semiconductor lasers
laser diodes
Semiconductors
Switching
Telecommunications
Telecommunications and information theory
Temperature
thermal effects
Tunable circuits and devices
tunable semiconductor laser
Tuning
wavelength drift
wavelength-division multiplexing (WDM)
Wavelengths
title Precompensation Techniques to Suppress the Thermally Induced Wavelength Drift in Tunable DBR Lasers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T09%3A58%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Precompensation%20Techniques%20to%20Suppress%20the%20Thermally%20Induced%20Wavelength%20Drift%20in%20Tunable%20DBR%20Lasers&rft.jtitle=IEEE%20journal%20of%20quantum%20electronics&rft.au=Darvish,%20G.&rft.date=2008-10-01&rft.volume=44&rft.issue=10&rft.spage=958&rft.epage=965&rft.pages=958-965&rft.issn=0018-9197&rft.eissn=1558-1713&rft.coden=IEJQA7&rft_id=info:doi/10.1109/JQE.2008.2001303&rft_dat=%3Cproquest_RIE%3E34464951%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=862210137&rft_id=info:pmid/&rft_ieee_id=4633719&rfr_iscdi=true