A Simple State-Based Prognostic Model for Railway Turnout Systems
The importance of railway transportation has been increasing in the world. Considering the current and future estimates of high cargo and passenger transportation volume in railways, prevention or reduction of delays due to any failure is becoming ever more crucial. Railway turnout systems are one o...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on industrial electronics (1982) 2011-05, Vol.58 (5), p.1718-1726 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1726 |
---|---|
container_issue | 5 |
container_start_page | 1718 |
container_title | IEEE transactions on industrial electronics (1982) |
container_volume | 58 |
creator | Eker, O F Camci, F Guclu, A Yilboga, H Sevkli, M Baskan, S |
description | The importance of railway transportation has been increasing in the world. Considering the current and future estimates of high cargo and passenger transportation volume in railways, prevention or reduction of delays due to any failure is becoming ever more crucial. Railway turnout systems are one of the most critical pieces of equipment in railway infrastructure. When incipient failures occur, they mostly progress slowly from the fault-free to the failure state. Although studies focusing on the identification of possible failures in railway turnout systems exist in literature, neither the detection nor forecasting of failure progression has been reported. This paper presents a simple state-based prognostic (SSBP) method that aims to detect and forecast failure progression in electromechanical systems. The method is compared with Hidden-Markov-Model-based methods on real data collected from a railway turnout system. Obtaining statistically sufficient failure progression samples is difficult, considering that the natural progression of failures in electromechanical systems may take years. In addition, validating the classification model is difficult when the degradation is not observable. Data collection and model validation strategies for failure progression are also presented. |
doi_str_mv | 10.1109/TIE.2010.2051399 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_861523808</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5747204</ieee_id><sourcerecordid>875030614</sourcerecordid><originalsourceid>FETCH-LOGICAL-c411t-a3e0dee4cedbef9f653d35c772c7d48823fe395dd82ee648eeb322f8ce6aff2d3</originalsourceid><addsrcrecordid>eNpdkE1LAzEURYMoWKt7wU1w42pqPieZZS1VCxXF1nVIkxeZMm1qMoP03zul4sLV48G5l8tB6JqSEaWkul_OpiNG-o8RSXlVnaABlVIVVSX0KRoQpnRBiCjP0UXOa0KokFQO0HiMF_Vm1wBetLaF4sFm8Pgtxc9tzG3t8Ev00OAQE363dfNt93jZpW3sWrzY5xY2-RKdBdtkuPq9Q_TxOF1Onov569NsMp4XTlDaFpYD8QDCgV9BqEIpuefSKcWc8kJrxgPwSnqvGUApNMCKMxa0g9KGwDwfortj7y7Frw5yazZ1dtA0dguxy0YrSTgpqejJ23_kOvab-3FGl1QyronuIXKEXIo5Jwhml-qNTXtDiTkYNb1RczBqfo32kZtjpAaAP1wqoRgR_Ac-FnGs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>861523808</pqid></control><display><type>article</type><title>A Simple State-Based Prognostic Model for Railway Turnout Systems</title><source>IEEE Electronic Library (IEL)</source><creator>Eker, O F ; Camci, F ; Guclu, A ; Yilboga, H ; Sevkli, M ; Baskan, S</creator><creatorcontrib>Eker, O F ; Camci, F ; Guclu, A ; Yilboga, H ; Sevkli, M ; Baskan, S</creatorcontrib><description>The importance of railway transportation has been increasing in the world. Considering the current and future estimates of high cargo and passenger transportation volume in railways, prevention or reduction of delays due to any failure is becoming ever more crucial. Railway turnout systems are one of the most critical pieces of equipment in railway infrastructure. When incipient failures occur, they mostly progress slowly from the fault-free to the failure state. Although studies focusing on the identification of possible failures in railway turnout systems exist in literature, neither the detection nor forecasting of failure progression has been reported. This paper presents a simple state-based prognostic (SSBP) method that aims to detect and forecast failure progression in electromechanical systems. The method is compared with Hidden-Markov-Model-based methods on real data collected from a railway turnout system. Obtaining statistically sufficient failure progression samples is difficult, considering that the natural progression of failures in electromechanical systems may take years. In addition, validating the classification model is difficult when the degradation is not observable. Data collection and model validation strategies for failure progression are also presented.</description><identifier>ISSN: 0278-0046</identifier><identifier>EISSN: 1557-9948</identifier><identifier>DOI: 10.1109/TIE.2010.2051399</identifier><identifier>CODEN: ITIED6</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Data collection ; Data models ; Degradation ; Diagnostic expert system ; Failure ; failure analysis ; fault diagnosis ; Focusing ; forecasting ; Hidden Markov models ; Maintenance engineering ; Mathematical models ; prognostics ; Progressions ; Rail transportation ; rail transportation maintenance ; Railroads ; Rails ; Railway engineering ; railway turnouts ; Railways ; remaining useful life estimation ; Studies ; time series ; Time series analysis ; Transportation</subject><ispartof>IEEE transactions on industrial electronics (1982), 2011-05, Vol.58 (5), p.1718-1726</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) May 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c411t-a3e0dee4cedbef9f653d35c772c7d48823fe395dd82ee648eeb322f8ce6aff2d3</citedby><cites>FETCH-LOGICAL-c411t-a3e0dee4cedbef9f653d35c772c7d48823fe395dd82ee648eeb322f8ce6aff2d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5747204$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5747204$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Eker, O F</creatorcontrib><creatorcontrib>Camci, F</creatorcontrib><creatorcontrib>Guclu, A</creatorcontrib><creatorcontrib>Yilboga, H</creatorcontrib><creatorcontrib>Sevkli, M</creatorcontrib><creatorcontrib>Baskan, S</creatorcontrib><title>A Simple State-Based Prognostic Model for Railway Turnout Systems</title><title>IEEE transactions on industrial electronics (1982)</title><addtitle>TIE</addtitle><description>The importance of railway transportation has been increasing in the world. Considering the current and future estimates of high cargo and passenger transportation volume in railways, prevention or reduction of delays due to any failure is becoming ever more crucial. Railway turnout systems are one of the most critical pieces of equipment in railway infrastructure. When incipient failures occur, they mostly progress slowly from the fault-free to the failure state. Although studies focusing on the identification of possible failures in railway turnout systems exist in literature, neither the detection nor forecasting of failure progression has been reported. This paper presents a simple state-based prognostic (SSBP) method that aims to detect and forecast failure progression in electromechanical systems. The method is compared with Hidden-Markov-Model-based methods on real data collected from a railway turnout system. Obtaining statistically sufficient failure progression samples is difficult, considering that the natural progression of failures in electromechanical systems may take years. In addition, validating the classification model is difficult when the degradation is not observable. Data collection and model validation strategies for failure progression are also presented.</description><subject>Data collection</subject><subject>Data models</subject><subject>Degradation</subject><subject>Diagnostic expert system</subject><subject>Failure</subject><subject>failure analysis</subject><subject>fault diagnosis</subject><subject>Focusing</subject><subject>forecasting</subject><subject>Hidden Markov models</subject><subject>Maintenance engineering</subject><subject>Mathematical models</subject><subject>prognostics</subject><subject>Progressions</subject><subject>Rail transportation</subject><subject>rail transportation maintenance</subject><subject>Railroads</subject><subject>Rails</subject><subject>Railway engineering</subject><subject>railway turnouts</subject><subject>Railways</subject><subject>remaining useful life estimation</subject><subject>Studies</subject><subject>time series</subject><subject>Time series analysis</subject><subject>Transportation</subject><issn>0278-0046</issn><issn>1557-9948</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE1LAzEURYMoWKt7wU1w42pqPieZZS1VCxXF1nVIkxeZMm1qMoP03zul4sLV48G5l8tB6JqSEaWkul_OpiNG-o8RSXlVnaABlVIVVSX0KRoQpnRBiCjP0UXOa0KokFQO0HiMF_Vm1wBetLaF4sFm8Pgtxc9tzG3t8Ev00OAQE363dfNt93jZpW3sWrzY5xY2-RKdBdtkuPq9Q_TxOF1Onov569NsMp4XTlDaFpYD8QDCgV9BqEIpuefSKcWc8kJrxgPwSnqvGUApNMCKMxa0g9KGwDwfortj7y7Frw5yazZ1dtA0dguxy0YrSTgpqejJ23_kOvab-3FGl1QyronuIXKEXIo5Jwhml-qNTXtDiTkYNb1RczBqfo32kZtjpAaAP1wqoRgR_Ac-FnGs</recordid><startdate>201105</startdate><enddate>201105</enddate><creator>Eker, O F</creator><creator>Camci, F</creator><creator>Guclu, A</creator><creator>Yilboga, H</creator><creator>Sevkli, M</creator><creator>Baskan, S</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>201105</creationdate><title>A Simple State-Based Prognostic Model for Railway Turnout Systems</title><author>Eker, O F ; Camci, F ; Guclu, A ; Yilboga, H ; Sevkli, M ; Baskan, S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c411t-a3e0dee4cedbef9f653d35c772c7d48823fe395dd82ee648eeb322f8ce6aff2d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Data collection</topic><topic>Data models</topic><topic>Degradation</topic><topic>Diagnostic expert system</topic><topic>Failure</topic><topic>failure analysis</topic><topic>fault diagnosis</topic><topic>Focusing</topic><topic>forecasting</topic><topic>Hidden Markov models</topic><topic>Maintenance engineering</topic><topic>Mathematical models</topic><topic>prognostics</topic><topic>Progressions</topic><topic>Rail transportation</topic><topic>rail transportation maintenance</topic><topic>Railroads</topic><topic>Rails</topic><topic>Railway engineering</topic><topic>railway turnouts</topic><topic>Railways</topic><topic>remaining useful life estimation</topic><topic>Studies</topic><topic>time series</topic><topic>Time series analysis</topic><topic>Transportation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Eker, O F</creatorcontrib><creatorcontrib>Camci, F</creatorcontrib><creatorcontrib>Guclu, A</creatorcontrib><creatorcontrib>Yilboga, H</creatorcontrib><creatorcontrib>Sevkli, M</creatorcontrib><creatorcontrib>Baskan, S</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on industrial electronics (1982)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Eker, O F</au><au>Camci, F</au><au>Guclu, A</au><au>Yilboga, H</au><au>Sevkli, M</au><au>Baskan, S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Simple State-Based Prognostic Model for Railway Turnout Systems</atitle><jtitle>IEEE transactions on industrial electronics (1982)</jtitle><stitle>TIE</stitle><date>2011-05</date><risdate>2011</risdate><volume>58</volume><issue>5</issue><spage>1718</spage><epage>1726</epage><pages>1718-1726</pages><issn>0278-0046</issn><eissn>1557-9948</eissn><coden>ITIED6</coden><abstract>The importance of railway transportation has been increasing in the world. Considering the current and future estimates of high cargo and passenger transportation volume in railways, prevention or reduction of delays due to any failure is becoming ever more crucial. Railway turnout systems are one of the most critical pieces of equipment in railway infrastructure. When incipient failures occur, they mostly progress slowly from the fault-free to the failure state. Although studies focusing on the identification of possible failures in railway turnout systems exist in literature, neither the detection nor forecasting of failure progression has been reported. This paper presents a simple state-based prognostic (SSBP) method that aims to detect and forecast failure progression in electromechanical systems. The method is compared with Hidden-Markov-Model-based methods on real data collected from a railway turnout system. Obtaining statistically sufficient failure progression samples is difficult, considering that the natural progression of failures in electromechanical systems may take years. In addition, validating the classification model is difficult when the degradation is not observable. Data collection and model validation strategies for failure progression are also presented.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIE.2010.2051399</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0278-0046 |
ispartof | IEEE transactions on industrial electronics (1982), 2011-05, Vol.58 (5), p.1718-1726 |
issn | 0278-0046 1557-9948 |
language | eng |
recordid | cdi_proquest_journals_861523808 |
source | IEEE Electronic Library (IEL) |
subjects | Data collection Data models Degradation Diagnostic expert system Failure failure analysis fault diagnosis Focusing forecasting Hidden Markov models Maintenance engineering Mathematical models prognostics Progressions Rail transportation rail transportation maintenance Railroads Rails Railway engineering railway turnouts Railways remaining useful life estimation Studies time series Time series analysis Transportation |
title | A Simple State-Based Prognostic Model for Railway Turnout Systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T02%3A35%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Simple%20State-Based%20Prognostic%20Model%20for%20Railway%20Turnout%20Systems&rft.jtitle=IEEE%20transactions%20on%20industrial%20electronics%20(1982)&rft.au=Eker,%20O%20F&rft.date=2011-05&rft.volume=58&rft.issue=5&rft.spage=1718&rft.epage=1726&rft.pages=1718-1726&rft.issn=0278-0046&rft.eissn=1557-9948&rft.coden=ITIED6&rft_id=info:doi/10.1109/TIE.2010.2051399&rft_dat=%3Cproquest_RIE%3E875030614%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=861523808&rft_id=info:pmid/&rft_ieee_id=5747204&rfr_iscdi=true |