A Simple State-Based Prognostic Model for Railway Turnout Systems

The importance of railway transportation has been increasing in the world. Considering the current and future estimates of high cargo and passenger transportation volume in railways, prevention or reduction of delays due to any failure is becoming ever more crucial. Railway turnout systems are one o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on industrial electronics (1982) 2011-05, Vol.58 (5), p.1718-1726
Hauptverfasser: Eker, O F, Camci, F, Guclu, A, Yilboga, H, Sevkli, M, Baskan, S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1726
container_issue 5
container_start_page 1718
container_title IEEE transactions on industrial electronics (1982)
container_volume 58
creator Eker, O F
Camci, F
Guclu, A
Yilboga, H
Sevkli, M
Baskan, S
description The importance of railway transportation has been increasing in the world. Considering the current and future estimates of high cargo and passenger transportation volume in railways, prevention or reduction of delays due to any failure is becoming ever more crucial. Railway turnout systems are one of the most critical pieces of equipment in railway infrastructure. When incipient failures occur, they mostly progress slowly from the fault-free to the failure state. Although studies focusing on the identification of possible failures in railway turnout systems exist in literature, neither the detection nor forecasting of failure progression has been reported. This paper presents a simple state-based prognostic (SSBP) method that aims to detect and forecast failure progression in electromechanical systems. The method is compared with Hidden-Markov-Model-based methods on real data collected from a railway turnout system. Obtaining statistically sufficient failure progression samples is difficult, considering that the natural progression of failures in electromechanical systems may take years. In addition, validating the classification model is difficult when the degradation is not observable. Data collection and model validation strategies for failure progression are also presented.
doi_str_mv 10.1109/TIE.2010.2051399
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_861523808</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5747204</ieee_id><sourcerecordid>875030614</sourcerecordid><originalsourceid>FETCH-LOGICAL-c411t-a3e0dee4cedbef9f653d35c772c7d48823fe395dd82ee648eeb322f8ce6aff2d3</originalsourceid><addsrcrecordid>eNpdkE1LAzEURYMoWKt7wU1w42pqPieZZS1VCxXF1nVIkxeZMm1qMoP03zul4sLV48G5l8tB6JqSEaWkul_OpiNG-o8RSXlVnaABlVIVVSX0KRoQpnRBiCjP0UXOa0KokFQO0HiMF_Vm1wBetLaF4sFm8Pgtxc9tzG3t8Ev00OAQE363dfNt93jZpW3sWrzY5xY2-RKdBdtkuPq9Q_TxOF1Onov569NsMp4XTlDaFpYD8QDCgV9BqEIpuefSKcWc8kJrxgPwSnqvGUApNMCKMxa0g9KGwDwfortj7y7Frw5yazZ1dtA0dguxy0YrSTgpqejJ23_kOvab-3FGl1QyronuIXKEXIo5Jwhml-qNTXtDiTkYNb1RczBqfo32kZtjpAaAP1wqoRgR_Ac-FnGs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>861523808</pqid></control><display><type>article</type><title>A Simple State-Based Prognostic Model for Railway Turnout Systems</title><source>IEEE Electronic Library (IEL)</source><creator>Eker, O F ; Camci, F ; Guclu, A ; Yilboga, H ; Sevkli, M ; Baskan, S</creator><creatorcontrib>Eker, O F ; Camci, F ; Guclu, A ; Yilboga, H ; Sevkli, M ; Baskan, S</creatorcontrib><description>The importance of railway transportation has been increasing in the world. Considering the current and future estimates of high cargo and passenger transportation volume in railways, prevention or reduction of delays due to any failure is becoming ever more crucial. Railway turnout systems are one of the most critical pieces of equipment in railway infrastructure. When incipient failures occur, they mostly progress slowly from the fault-free to the failure state. Although studies focusing on the identification of possible failures in railway turnout systems exist in literature, neither the detection nor forecasting of failure progression has been reported. This paper presents a simple state-based prognostic (SSBP) method that aims to detect and forecast failure progression in electromechanical systems. The method is compared with Hidden-Markov-Model-based methods on real data collected from a railway turnout system. Obtaining statistically sufficient failure progression samples is difficult, considering that the natural progression of failures in electromechanical systems may take years. In addition, validating the classification model is difficult when the degradation is not observable. Data collection and model validation strategies for failure progression are also presented.</description><identifier>ISSN: 0278-0046</identifier><identifier>EISSN: 1557-9948</identifier><identifier>DOI: 10.1109/TIE.2010.2051399</identifier><identifier>CODEN: ITIED6</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Data collection ; Data models ; Degradation ; Diagnostic expert system ; Failure ; failure analysis ; fault diagnosis ; Focusing ; forecasting ; Hidden Markov models ; Maintenance engineering ; Mathematical models ; prognostics ; Progressions ; Rail transportation ; rail transportation maintenance ; Railroads ; Rails ; Railway engineering ; railway turnouts ; Railways ; remaining useful life estimation ; Studies ; time series ; Time series analysis ; Transportation</subject><ispartof>IEEE transactions on industrial electronics (1982), 2011-05, Vol.58 (5), p.1718-1726</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) May 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c411t-a3e0dee4cedbef9f653d35c772c7d48823fe395dd82ee648eeb322f8ce6aff2d3</citedby><cites>FETCH-LOGICAL-c411t-a3e0dee4cedbef9f653d35c772c7d48823fe395dd82ee648eeb322f8ce6aff2d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5747204$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5747204$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Eker, O F</creatorcontrib><creatorcontrib>Camci, F</creatorcontrib><creatorcontrib>Guclu, A</creatorcontrib><creatorcontrib>Yilboga, H</creatorcontrib><creatorcontrib>Sevkli, M</creatorcontrib><creatorcontrib>Baskan, S</creatorcontrib><title>A Simple State-Based Prognostic Model for Railway Turnout Systems</title><title>IEEE transactions on industrial electronics (1982)</title><addtitle>TIE</addtitle><description>The importance of railway transportation has been increasing in the world. Considering the current and future estimates of high cargo and passenger transportation volume in railways, prevention or reduction of delays due to any failure is becoming ever more crucial. Railway turnout systems are one of the most critical pieces of equipment in railway infrastructure. When incipient failures occur, they mostly progress slowly from the fault-free to the failure state. Although studies focusing on the identification of possible failures in railway turnout systems exist in literature, neither the detection nor forecasting of failure progression has been reported. This paper presents a simple state-based prognostic (SSBP) method that aims to detect and forecast failure progression in electromechanical systems. The method is compared with Hidden-Markov-Model-based methods on real data collected from a railway turnout system. Obtaining statistically sufficient failure progression samples is difficult, considering that the natural progression of failures in electromechanical systems may take years. In addition, validating the classification model is difficult when the degradation is not observable. Data collection and model validation strategies for failure progression are also presented.</description><subject>Data collection</subject><subject>Data models</subject><subject>Degradation</subject><subject>Diagnostic expert system</subject><subject>Failure</subject><subject>failure analysis</subject><subject>fault diagnosis</subject><subject>Focusing</subject><subject>forecasting</subject><subject>Hidden Markov models</subject><subject>Maintenance engineering</subject><subject>Mathematical models</subject><subject>prognostics</subject><subject>Progressions</subject><subject>Rail transportation</subject><subject>rail transportation maintenance</subject><subject>Railroads</subject><subject>Rails</subject><subject>Railway engineering</subject><subject>railway turnouts</subject><subject>Railways</subject><subject>remaining useful life estimation</subject><subject>Studies</subject><subject>time series</subject><subject>Time series analysis</subject><subject>Transportation</subject><issn>0278-0046</issn><issn>1557-9948</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE1LAzEURYMoWKt7wU1w42pqPieZZS1VCxXF1nVIkxeZMm1qMoP03zul4sLV48G5l8tB6JqSEaWkul_OpiNG-o8RSXlVnaABlVIVVSX0KRoQpnRBiCjP0UXOa0KokFQO0HiMF_Vm1wBetLaF4sFm8Pgtxc9tzG3t8Ev00OAQE363dfNt93jZpW3sWrzY5xY2-RKdBdtkuPq9Q_TxOF1Onov569NsMp4XTlDaFpYD8QDCgV9BqEIpuefSKcWc8kJrxgPwSnqvGUApNMCKMxa0g9KGwDwfortj7y7Frw5yazZ1dtA0dguxy0YrSTgpqejJ23_kOvab-3FGl1QyronuIXKEXIo5Jwhml-qNTXtDiTkYNb1RczBqfo32kZtjpAaAP1wqoRgR_Ac-FnGs</recordid><startdate>201105</startdate><enddate>201105</enddate><creator>Eker, O F</creator><creator>Camci, F</creator><creator>Guclu, A</creator><creator>Yilboga, H</creator><creator>Sevkli, M</creator><creator>Baskan, S</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>201105</creationdate><title>A Simple State-Based Prognostic Model for Railway Turnout Systems</title><author>Eker, O F ; Camci, F ; Guclu, A ; Yilboga, H ; Sevkli, M ; Baskan, S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c411t-a3e0dee4cedbef9f653d35c772c7d48823fe395dd82ee648eeb322f8ce6aff2d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Data collection</topic><topic>Data models</topic><topic>Degradation</topic><topic>Diagnostic expert system</topic><topic>Failure</topic><topic>failure analysis</topic><topic>fault diagnosis</topic><topic>Focusing</topic><topic>forecasting</topic><topic>Hidden Markov models</topic><topic>Maintenance engineering</topic><topic>Mathematical models</topic><topic>prognostics</topic><topic>Progressions</topic><topic>Rail transportation</topic><topic>rail transportation maintenance</topic><topic>Railroads</topic><topic>Rails</topic><topic>Railway engineering</topic><topic>railway turnouts</topic><topic>Railways</topic><topic>remaining useful life estimation</topic><topic>Studies</topic><topic>time series</topic><topic>Time series analysis</topic><topic>Transportation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Eker, O F</creatorcontrib><creatorcontrib>Camci, F</creatorcontrib><creatorcontrib>Guclu, A</creatorcontrib><creatorcontrib>Yilboga, H</creatorcontrib><creatorcontrib>Sevkli, M</creatorcontrib><creatorcontrib>Baskan, S</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on industrial electronics (1982)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Eker, O F</au><au>Camci, F</au><au>Guclu, A</au><au>Yilboga, H</au><au>Sevkli, M</au><au>Baskan, S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Simple State-Based Prognostic Model for Railway Turnout Systems</atitle><jtitle>IEEE transactions on industrial electronics (1982)</jtitle><stitle>TIE</stitle><date>2011-05</date><risdate>2011</risdate><volume>58</volume><issue>5</issue><spage>1718</spage><epage>1726</epage><pages>1718-1726</pages><issn>0278-0046</issn><eissn>1557-9948</eissn><coden>ITIED6</coden><abstract>The importance of railway transportation has been increasing in the world. Considering the current and future estimates of high cargo and passenger transportation volume in railways, prevention or reduction of delays due to any failure is becoming ever more crucial. Railway turnout systems are one of the most critical pieces of equipment in railway infrastructure. When incipient failures occur, they mostly progress slowly from the fault-free to the failure state. Although studies focusing on the identification of possible failures in railway turnout systems exist in literature, neither the detection nor forecasting of failure progression has been reported. This paper presents a simple state-based prognostic (SSBP) method that aims to detect and forecast failure progression in electromechanical systems. The method is compared with Hidden-Markov-Model-based methods on real data collected from a railway turnout system. Obtaining statistically sufficient failure progression samples is difficult, considering that the natural progression of failures in electromechanical systems may take years. In addition, validating the classification model is difficult when the degradation is not observable. Data collection and model validation strategies for failure progression are also presented.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIE.2010.2051399</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0278-0046
ispartof IEEE transactions on industrial electronics (1982), 2011-05, Vol.58 (5), p.1718-1726
issn 0278-0046
1557-9948
language eng
recordid cdi_proquest_journals_861523808
source IEEE Electronic Library (IEL)
subjects Data collection
Data models
Degradation
Diagnostic expert system
Failure
failure analysis
fault diagnosis
Focusing
forecasting
Hidden Markov models
Maintenance engineering
Mathematical models
prognostics
Progressions
Rail transportation
rail transportation maintenance
Railroads
Rails
Railway engineering
railway turnouts
Railways
remaining useful life estimation
Studies
time series
Time series analysis
Transportation
title A Simple State-Based Prognostic Model for Railway Turnout Systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T02%3A35%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Simple%20State-Based%20Prognostic%20Model%20for%20Railway%20Turnout%20Systems&rft.jtitle=IEEE%20transactions%20on%20industrial%20electronics%20(1982)&rft.au=Eker,%20O%20F&rft.date=2011-05&rft.volume=58&rft.issue=5&rft.spage=1718&rft.epage=1726&rft.pages=1718-1726&rft.issn=0278-0046&rft.eissn=1557-9948&rft.coden=ITIED6&rft_id=info:doi/10.1109/TIE.2010.2051399&rft_dat=%3Cproquest_RIE%3E875030614%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=861523808&rft_id=info:pmid/&rft_ieee_id=5747204&rfr_iscdi=true