Finite-Level Quantized Feedback Control for Linear Systems

This technical note studies quantized output feedback control of discrete-time linear systems using a finite-level quantizer. The main objective is to find a quantization strategy which is easily implementable and achieves asymptotic stabilization. Based on a known logarithmic quantization scheme, w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on automatic control 2009-05, Vol.54 (5), p.1165-1170
Hauptverfasser: Minyue Fu, Minyue Fu, Lihua Xie, Lihua Xie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1170
container_issue 5
container_start_page 1165
container_title IEEE transactions on automatic control
container_volume 54
creator Minyue Fu, Minyue Fu
Lihua Xie, Lihua Xie
description This technical note studies quantized output feedback control of discrete-time linear systems using a finite-level quantizer. The main objective is to find a quantization strategy which is easily implementable and achieves asymptotic stabilization. Based on a known logarithmic quantization scheme, we introduce a simple dynamic scaling method for the quantizer. A suboptimal approach for the optimization of the number of quantization levels and the design of a corresponding quantized dynamic output feedback controller is given. The robustness of the dynamic quantization scheme with respect to input disturbances is also examined.
doi_str_mv 10.1109/TAC.2009.2017815
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_861291030</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4908931</ieee_id><sourcerecordid>889381555</sourcerecordid><originalsourceid>FETCH-LOGICAL-c352t-eeb3db57e0b38458c86e6e3da1280cf62cbce05385cbae00b9559c7099d9b0643</originalsourceid><addsrcrecordid>eNpdkNFLwzAQxoMoOKfvgi9FEJ86L0nTJr6N4lQoiDifQ5peobNrZ9IK8683Y2MPwnHHcb_7uPsIuaYwoxTUw3KezxiAColmkooTMqFCyJgJxk_JBIDKWDGZnpML71ehTZOETsjjoumaAeMCf7CN3kfTDc0vVtECsSqN_Yryvhtc30Z176Ki6dC46GPrB1z7S3JWm9bj1aFOyefiaZm_xMXb82s-L2LLBRtixJJXpcgQSi4TIa1MMUVeGcok2DpltrQIgkthS4MApRJC2QyUqlQJacKn5H6vu3H994h-0OvGW2xb02E_ei2l4uFhIQJ5-49c9aPrwnFappQpChwCBHvIut57h7XeuGZt3FZT0DsrdbBS76zUByvDyt1B13hr2tqZzjb-uMdoloSQgbvZcw0iHseJgnAh5X80zXqq</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>861291030</pqid></control><display><type>article</type><title>Finite-Level Quantized Feedback Control for Linear Systems</title><source>IEEE Electronic Library (IEL)</source><creator>Minyue Fu, Minyue Fu ; Lihua Xie, Lihua Xie</creator><creatorcontrib>Minyue Fu, Minyue Fu ; Lihua Xie, Lihua Xie</creatorcontrib><description>This technical note studies quantized output feedback control of discrete-time linear systems using a finite-level quantizer. The main objective is to find a quantization strategy which is easily implementable and achieves asymptotic stabilization. Based on a known logarithmic quantization scheme, we introduce a simple dynamic scaling method for the quantizer. A suboptimal approach for the optimization of the number of quantization levels and the design of a corresponding quantized dynamic output feedback controller is given. The robustness of the dynamic quantization scheme with respect to input disturbances is also examined.</description><identifier>ISSN: 0018-9286</identifier><identifier>EISSN: 1558-2523</identifier><identifier>DOI: 10.1109/TAC.2009.2017815</identifier><identifier>CODEN: IETAA9</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Asymptotic properties ; Computer science; control theory; systems ; Control systems ; Control theory. Systems ; Counters ; Design optimization ; Dynamics ; Exact sciences and technology ; Feedback control ; Linear feedback control systems ; Linear systems ; Linear time-invariant (LTI) ; Nonlinear dynamical systems ; Output feedback ; Quantization ; Robustness ; single-input single-output (SISO) ; State feedback ; Strategy</subject><ispartof>IEEE transactions on automatic control, 2009-05, Vol.54 (5), p.1165-1170</ispartof><rights>2009 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c352t-eeb3db57e0b38458c86e6e3da1280cf62cbce05385cbae00b9559c7099d9b0643</citedby><cites>FETCH-LOGICAL-c352t-eeb3db57e0b38458c86e6e3da1280cf62cbce05385cbae00b9559c7099d9b0643</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4908931$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4908931$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21741748$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Minyue Fu, Minyue Fu</creatorcontrib><creatorcontrib>Lihua Xie, Lihua Xie</creatorcontrib><title>Finite-Level Quantized Feedback Control for Linear Systems</title><title>IEEE transactions on automatic control</title><addtitle>TAC</addtitle><description>This technical note studies quantized output feedback control of discrete-time linear systems using a finite-level quantizer. The main objective is to find a quantization strategy which is easily implementable and achieves asymptotic stabilization. Based on a known logarithmic quantization scheme, we introduce a simple dynamic scaling method for the quantizer. A suboptimal approach for the optimization of the number of quantization levels and the design of a corresponding quantized dynamic output feedback controller is given. The robustness of the dynamic quantization scheme with respect to input disturbances is also examined.</description><subject>Applied sciences</subject><subject>Asymptotic properties</subject><subject>Computer science; control theory; systems</subject><subject>Control systems</subject><subject>Control theory. Systems</subject><subject>Counters</subject><subject>Design optimization</subject><subject>Dynamics</subject><subject>Exact sciences and technology</subject><subject>Feedback control</subject><subject>Linear feedback control systems</subject><subject>Linear systems</subject><subject>Linear time-invariant (LTI)</subject><subject>Nonlinear dynamical systems</subject><subject>Output feedback</subject><subject>Quantization</subject><subject>Robustness</subject><subject>single-input single-output (SISO)</subject><subject>State feedback</subject><subject>Strategy</subject><issn>0018-9286</issn><issn>1558-2523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkNFLwzAQxoMoOKfvgi9FEJ86L0nTJr6N4lQoiDifQ5peobNrZ9IK8683Y2MPwnHHcb_7uPsIuaYwoxTUw3KezxiAColmkooTMqFCyJgJxk_JBIDKWDGZnpML71ehTZOETsjjoumaAeMCf7CN3kfTDc0vVtECsSqN_Yryvhtc30Z176Ki6dC46GPrB1z7S3JWm9bj1aFOyefiaZm_xMXb82s-L2LLBRtixJJXpcgQSi4TIa1MMUVeGcok2DpltrQIgkthS4MApRJC2QyUqlQJacKn5H6vu3H994h-0OvGW2xb02E_ei2l4uFhIQJ5-49c9aPrwnFappQpChwCBHvIut57h7XeuGZt3FZT0DsrdbBS76zUByvDyt1B13hr2tqZzjb-uMdoloSQgbvZcw0iHseJgnAh5X80zXqq</recordid><startdate>20090501</startdate><enddate>20090501</enddate><creator>Minyue Fu, Minyue Fu</creator><creator>Lihua Xie, Lihua Xie</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope></search><sort><creationdate>20090501</creationdate><title>Finite-Level Quantized Feedback Control for Linear Systems</title><author>Minyue Fu, Minyue Fu ; Lihua Xie, Lihua Xie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c352t-eeb3db57e0b38458c86e6e3da1280cf62cbce05385cbae00b9559c7099d9b0643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Applied sciences</topic><topic>Asymptotic properties</topic><topic>Computer science; control theory; systems</topic><topic>Control systems</topic><topic>Control theory. Systems</topic><topic>Counters</topic><topic>Design optimization</topic><topic>Dynamics</topic><topic>Exact sciences and technology</topic><topic>Feedback control</topic><topic>Linear feedback control systems</topic><topic>Linear systems</topic><topic>Linear time-invariant (LTI)</topic><topic>Nonlinear dynamical systems</topic><topic>Output feedback</topic><topic>Quantization</topic><topic>Robustness</topic><topic>single-input single-output (SISO)</topic><topic>State feedback</topic><topic>Strategy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Minyue Fu, Minyue Fu</creatorcontrib><creatorcontrib>Lihua Xie, Lihua Xie</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><jtitle>IEEE transactions on automatic control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Minyue Fu, Minyue Fu</au><au>Lihua Xie, Lihua Xie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Finite-Level Quantized Feedback Control for Linear Systems</atitle><jtitle>IEEE transactions on automatic control</jtitle><stitle>TAC</stitle><date>2009-05-01</date><risdate>2009</risdate><volume>54</volume><issue>5</issue><spage>1165</spage><epage>1170</epage><pages>1165-1170</pages><issn>0018-9286</issn><eissn>1558-2523</eissn><coden>IETAA9</coden><abstract>This technical note studies quantized output feedback control of discrete-time linear systems using a finite-level quantizer. The main objective is to find a quantization strategy which is easily implementable and achieves asymptotic stabilization. Based on a known logarithmic quantization scheme, we introduce a simple dynamic scaling method for the quantizer. A suboptimal approach for the optimization of the number of quantization levels and the design of a corresponding quantized dynamic output feedback controller is given. The robustness of the dynamic quantization scheme with respect to input disturbances is also examined.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TAC.2009.2017815</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9286
ispartof IEEE transactions on automatic control, 2009-05, Vol.54 (5), p.1165-1170
issn 0018-9286
1558-2523
language eng
recordid cdi_proquest_journals_861291030
source IEEE Electronic Library (IEL)
subjects Applied sciences
Asymptotic properties
Computer science
control theory
systems
Control systems
Control theory. Systems
Counters
Design optimization
Dynamics
Exact sciences and technology
Feedback control
Linear feedback control systems
Linear systems
Linear time-invariant (LTI)
Nonlinear dynamical systems
Output feedback
Quantization
Robustness
single-input single-output (SISO)
State feedback
Strategy
title Finite-Level Quantized Feedback Control for Linear Systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T15%3A52%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Finite-Level%20Quantized%20Feedback%20Control%20for%20Linear%20Systems&rft.jtitle=IEEE%20transactions%20on%20automatic%20control&rft.au=Minyue%20Fu,%20Minyue%20Fu&rft.date=2009-05-01&rft.volume=54&rft.issue=5&rft.spage=1165&rft.epage=1170&rft.pages=1165-1170&rft.issn=0018-9286&rft.eissn=1558-2523&rft.coden=IETAA9&rft_id=info:doi/10.1109/TAC.2009.2017815&rft_dat=%3Cproquest_RIE%3E889381555%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=861291030&rft_id=info:pmid/&rft_ieee_id=4908931&rfr_iscdi=true