Finite-Level Quantized Feedback Control for Linear Systems
This technical note studies quantized output feedback control of discrete-time linear systems using a finite-level quantizer. The main objective is to find a quantization strategy which is easily implementable and achieves asymptotic stabilization. Based on a known logarithmic quantization scheme, w...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on automatic control 2009-05, Vol.54 (5), p.1165-1170 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1170 |
---|---|
container_issue | 5 |
container_start_page | 1165 |
container_title | IEEE transactions on automatic control |
container_volume | 54 |
creator | Minyue Fu, Minyue Fu Lihua Xie, Lihua Xie |
description | This technical note studies quantized output feedback control of discrete-time linear systems using a finite-level quantizer. The main objective is to find a quantization strategy which is easily implementable and achieves asymptotic stabilization. Based on a known logarithmic quantization scheme, we introduce a simple dynamic scaling method for the quantizer. A suboptimal approach for the optimization of the number of quantization levels and the design of a corresponding quantized dynamic output feedback controller is given. The robustness of the dynamic quantization scheme with respect to input disturbances is also examined. |
doi_str_mv | 10.1109/TAC.2009.2017815 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_861291030</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4908931</ieee_id><sourcerecordid>889381555</sourcerecordid><originalsourceid>FETCH-LOGICAL-c352t-eeb3db57e0b38458c86e6e3da1280cf62cbce05385cbae00b9559c7099d9b0643</originalsourceid><addsrcrecordid>eNpdkNFLwzAQxoMoOKfvgi9FEJ86L0nTJr6N4lQoiDifQ5peobNrZ9IK8683Y2MPwnHHcb_7uPsIuaYwoxTUw3KezxiAColmkooTMqFCyJgJxk_JBIDKWDGZnpML71ehTZOETsjjoumaAeMCf7CN3kfTDc0vVtECsSqN_Yryvhtc30Z176Ki6dC46GPrB1z7S3JWm9bj1aFOyefiaZm_xMXb82s-L2LLBRtixJJXpcgQSi4TIa1MMUVeGcok2DpltrQIgkthS4MApRJC2QyUqlQJacKn5H6vu3H994h-0OvGW2xb02E_ei2l4uFhIQJ5-49c9aPrwnFappQpChwCBHvIut57h7XeuGZt3FZT0DsrdbBS76zUByvDyt1B13hr2tqZzjb-uMdoloSQgbvZcw0iHseJgnAh5X80zXqq</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>861291030</pqid></control><display><type>article</type><title>Finite-Level Quantized Feedback Control for Linear Systems</title><source>IEEE Electronic Library (IEL)</source><creator>Minyue Fu, Minyue Fu ; Lihua Xie, Lihua Xie</creator><creatorcontrib>Minyue Fu, Minyue Fu ; Lihua Xie, Lihua Xie</creatorcontrib><description>This technical note studies quantized output feedback control of discrete-time linear systems using a finite-level quantizer. The main objective is to find a quantization strategy which is easily implementable and achieves asymptotic stabilization. Based on a known logarithmic quantization scheme, we introduce a simple dynamic scaling method for the quantizer. A suboptimal approach for the optimization of the number of quantization levels and the design of a corresponding quantized dynamic output feedback controller is given. The robustness of the dynamic quantization scheme with respect to input disturbances is also examined.</description><identifier>ISSN: 0018-9286</identifier><identifier>EISSN: 1558-2523</identifier><identifier>DOI: 10.1109/TAC.2009.2017815</identifier><identifier>CODEN: IETAA9</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Asymptotic properties ; Computer science; control theory; systems ; Control systems ; Control theory. Systems ; Counters ; Design optimization ; Dynamics ; Exact sciences and technology ; Feedback control ; Linear feedback control systems ; Linear systems ; Linear time-invariant (LTI) ; Nonlinear dynamical systems ; Output feedback ; Quantization ; Robustness ; single-input single-output (SISO) ; State feedback ; Strategy</subject><ispartof>IEEE transactions on automatic control, 2009-05, Vol.54 (5), p.1165-1170</ispartof><rights>2009 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c352t-eeb3db57e0b38458c86e6e3da1280cf62cbce05385cbae00b9559c7099d9b0643</citedby><cites>FETCH-LOGICAL-c352t-eeb3db57e0b38458c86e6e3da1280cf62cbce05385cbae00b9559c7099d9b0643</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4908931$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4908931$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21741748$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Minyue Fu, Minyue Fu</creatorcontrib><creatorcontrib>Lihua Xie, Lihua Xie</creatorcontrib><title>Finite-Level Quantized Feedback Control for Linear Systems</title><title>IEEE transactions on automatic control</title><addtitle>TAC</addtitle><description>This technical note studies quantized output feedback control of discrete-time linear systems using a finite-level quantizer. The main objective is to find a quantization strategy which is easily implementable and achieves asymptotic stabilization. Based on a known logarithmic quantization scheme, we introduce a simple dynamic scaling method for the quantizer. A suboptimal approach for the optimization of the number of quantization levels and the design of a corresponding quantized dynamic output feedback controller is given. The robustness of the dynamic quantization scheme with respect to input disturbances is also examined.</description><subject>Applied sciences</subject><subject>Asymptotic properties</subject><subject>Computer science; control theory; systems</subject><subject>Control systems</subject><subject>Control theory. Systems</subject><subject>Counters</subject><subject>Design optimization</subject><subject>Dynamics</subject><subject>Exact sciences and technology</subject><subject>Feedback control</subject><subject>Linear feedback control systems</subject><subject>Linear systems</subject><subject>Linear time-invariant (LTI)</subject><subject>Nonlinear dynamical systems</subject><subject>Output feedback</subject><subject>Quantization</subject><subject>Robustness</subject><subject>single-input single-output (SISO)</subject><subject>State feedback</subject><subject>Strategy</subject><issn>0018-9286</issn><issn>1558-2523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkNFLwzAQxoMoOKfvgi9FEJ86L0nTJr6N4lQoiDifQ5peobNrZ9IK8683Y2MPwnHHcb_7uPsIuaYwoxTUw3KezxiAColmkooTMqFCyJgJxk_JBIDKWDGZnpML71ehTZOETsjjoumaAeMCf7CN3kfTDc0vVtECsSqN_Yryvhtc30Z176Ki6dC46GPrB1z7S3JWm9bj1aFOyefiaZm_xMXb82s-L2LLBRtixJJXpcgQSi4TIa1MMUVeGcok2DpltrQIgkthS4MApRJC2QyUqlQJacKn5H6vu3H994h-0OvGW2xb02E_ei2l4uFhIQJ5-49c9aPrwnFappQpChwCBHvIut57h7XeuGZt3FZT0DsrdbBS76zUByvDyt1B13hr2tqZzjb-uMdoloSQgbvZcw0iHseJgnAh5X80zXqq</recordid><startdate>20090501</startdate><enddate>20090501</enddate><creator>Minyue Fu, Minyue Fu</creator><creator>Lihua Xie, Lihua Xie</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope></search><sort><creationdate>20090501</creationdate><title>Finite-Level Quantized Feedback Control for Linear Systems</title><author>Minyue Fu, Minyue Fu ; Lihua Xie, Lihua Xie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c352t-eeb3db57e0b38458c86e6e3da1280cf62cbce05385cbae00b9559c7099d9b0643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Applied sciences</topic><topic>Asymptotic properties</topic><topic>Computer science; control theory; systems</topic><topic>Control systems</topic><topic>Control theory. Systems</topic><topic>Counters</topic><topic>Design optimization</topic><topic>Dynamics</topic><topic>Exact sciences and technology</topic><topic>Feedback control</topic><topic>Linear feedback control systems</topic><topic>Linear systems</topic><topic>Linear time-invariant (LTI)</topic><topic>Nonlinear dynamical systems</topic><topic>Output feedback</topic><topic>Quantization</topic><topic>Robustness</topic><topic>single-input single-output (SISO)</topic><topic>State feedback</topic><topic>Strategy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Minyue Fu, Minyue Fu</creatorcontrib><creatorcontrib>Lihua Xie, Lihua Xie</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><jtitle>IEEE transactions on automatic control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Minyue Fu, Minyue Fu</au><au>Lihua Xie, Lihua Xie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Finite-Level Quantized Feedback Control for Linear Systems</atitle><jtitle>IEEE transactions on automatic control</jtitle><stitle>TAC</stitle><date>2009-05-01</date><risdate>2009</risdate><volume>54</volume><issue>5</issue><spage>1165</spage><epage>1170</epage><pages>1165-1170</pages><issn>0018-9286</issn><eissn>1558-2523</eissn><coden>IETAA9</coden><abstract>This technical note studies quantized output feedback control of discrete-time linear systems using a finite-level quantizer. The main objective is to find a quantization strategy which is easily implementable and achieves asymptotic stabilization. Based on a known logarithmic quantization scheme, we introduce a simple dynamic scaling method for the quantizer. A suboptimal approach for the optimization of the number of quantization levels and the design of a corresponding quantized dynamic output feedback controller is given. The robustness of the dynamic quantization scheme with respect to input disturbances is also examined.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TAC.2009.2017815</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9286 |
ispartof | IEEE transactions on automatic control, 2009-05, Vol.54 (5), p.1165-1170 |
issn | 0018-9286 1558-2523 |
language | eng |
recordid | cdi_proquest_journals_861291030 |
source | IEEE Electronic Library (IEL) |
subjects | Applied sciences Asymptotic properties Computer science control theory systems Control systems Control theory. Systems Counters Design optimization Dynamics Exact sciences and technology Feedback control Linear feedback control systems Linear systems Linear time-invariant (LTI) Nonlinear dynamical systems Output feedback Quantization Robustness single-input single-output (SISO) State feedback Strategy |
title | Finite-Level Quantized Feedback Control for Linear Systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T15%3A52%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Finite-Level%20Quantized%20Feedback%20Control%20for%20Linear%20Systems&rft.jtitle=IEEE%20transactions%20on%20automatic%20control&rft.au=Minyue%20Fu,%20Minyue%20Fu&rft.date=2009-05-01&rft.volume=54&rft.issue=5&rft.spage=1165&rft.epage=1170&rft.pages=1165-1170&rft.issn=0018-9286&rft.eissn=1558-2523&rft.coden=IETAA9&rft_id=info:doi/10.1109/TAC.2009.2017815&rft_dat=%3Cproquest_RIE%3E889381555%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=861291030&rft_id=info:pmid/&rft_ieee_id=4908931&rfr_iscdi=true |